机器学习中的归一化问题可以追溯到L1/L2正则化,训练得到参数更少、参数模更小的模型,来在模型的精度与泛化性之间取得平衡。大模型下的归一化方法也是这个目的。目前的大模型逐步在往多模态方向发展,底层处理了不同类型的数据(文本、图像、视频),因而,对模型的鲁棒性、性能等要求越来越高。在Transformer等各种不同的大模型中,归一化(Normalization)是提高模型训练稳定性和性能的关键技术,它在深度学习中对于提高模型的泛化能力起着至关重要的作用。本文简单介绍了归一化方法的作用,以及一些常见的归一化方法。值得一提的是,一些归一化方法(像RMSNorm),不仅使得模型有更好的效果,而且可以节省计算量因而,经常用于transformer等模型的加速。
归一化方法主要解决了如下几个问题:
- 缓解梯度消失和梯度爆炸问题:
○ 在深度神经网络中,由于多层的链式法则,梯度可能会在反向传播过程中变得非常小(梯度消失)或者非常大(梯度爆炸)。归一化技术如批归一化(Batch Normalization)通过规范化层的输出,使得梯度在合理的范围内传播,有助于提高模型的训练效果和泛化能力。 - 解决特征尺度不一致问题:
○ 深度学习模型对特征的尺度非常敏感。如果不同特征具有不同的尺度范围,某些特征可能会主导模型的训练过程。归一化技术通过将不同特征的尺度统一到相同的范围,使得模型能够平衡地对待所有特征,避免尺度不一致带来的偏差。 - 加快模型的收敛速度:
○ 归一化技术可以加快模型的收敛速度。当数据被归一化到一个较小的范围时,模型可以更快地找到合适的参数值,并减少训练过程中的震荡和不稳定性,从而节省训练时间,提高模型的效率。 - 提高模型的鲁棒性和泛化能力:
○ 通过数据归一化,模型可以更好地适应不同的数据分布和噪声情况。归一化增加了模型的鲁棒性,使得模型对输入数据的变化和扰动具有更好的容忍度。同时,归一化还有助于提高模型的泛化能力,使得模型在未见过的数据上表现更好。 - 减少对特定样本的过度敏感:
○ 批归一化通过随机选择小批量样本进行训练,增加了数据的多样性,从而减少网络对特定样本或样本顺序的过度敏感。这有助于防止过拟合,提高模