基于可变形形状的可扩展且鲁棒的放牧策略
1. 引言
群体运动控制旨在协调一组代理的移动,放牧便是该问题的一个实例。其目标通常是引导一群代理(如羊群、人群等)到达指定目标,不过也存在其他变体,例如护送或保护。解决放牧问题的方案通常是牧羊人引导羊群到达目标的一系列动作,这些动作可能是高级运动规划器的输出,也可能是基于代理行为独立或协同实现高级指令的结果。
放牧在现实生活中有广泛应用,涵盖动物放牧、人群控制和微操作等领域。然而,在这些场景中进行放牧极具挑战性,因为它涉及对大量动态代理的欠驱动控制,且代理的轨迹难以预测。目前,机器人和计算机动画领域虽有相关研究,但都未解决大规模群体放牧、有障碍物环境中的放牧以及应对群体运动不确定性等问题。
为使算法具备可扩展性和对不确定性的鲁棒性,高效的群体表示至关重要。一些简单方法将羊群表示为单个代理,严重限制了其处理大规模羊群的能力。本文提出的 Deform 方法,将羊群表示为可分裂和合并的可变形团块,这种表示方式比基于个体的表示更高效,且比圆盘或边界框等简单表示更能准确近似羊群。
2. 相关工作
2.1 环境变化对模拟人群行为的影响
- Brenner 等人研究了在灾难场景中添加障碍物对人群移动的影响。
- Schubert 和 Suzić 使用遗传算法和代理模拟来确定控制骚乱人群的最佳障碍物部署。
- 还有研究模拟了添加具有吸引力或排斥力的社会力量的代理以及不同角色代理(如“领导者”代理)的影响。
2.2 利用机器人代理控制生物
- Halloy 等人展示了机器人