
Datawhale学习笔记
文章平均质量分 92
晴日逝去
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Datawhale西瓜书学习笔记TASK7——支持向量机
机器学习,周志华,支持向量机原创 2024-12-01 23:46:57 · 1096 阅读 · 0 评论 -
Datawhale西瓜书学习笔记TASK6——神经网络
周志华西瓜书,机器学习,神经网络。原创 2024-11-28 23:08:03 · 1106 阅读 · 0 评论 -
Datawhale西瓜书学习笔记TASK5——决策树
机器学习,周志华,决策树原创 2024-11-25 23:43:16 · 914 阅读 · 0 评论 -
Datawhale西瓜书学习笔记TASK4——线性判别分析
机器学习,线性判别分析原创 2024-11-22 22:00:17 · 836 阅读 · 0 评论 -
Datawhale西瓜书学习笔记TASK3——对数几率回归
周志华《机器学习》之对数几率回归。原创 2024-11-19 20:52:26 · 923 阅读 · 0 评论 -
Datawhale西瓜书学习笔记TASK2——线性回归模型
机器学习,线性回归模型原创 2024-11-16 20:03:50 · 837 阅读 · 0 评论 -
Datawhale西瓜书学习笔记TASK1——机器学习的相关基本概念
机器学习基础知识原创 2024-11-13 21:50:45 · 959 阅读 · 0 评论 -
Datawhale 扣子Bot开发Task4笔记
Datawhale扣子bot开发笔记,封面为AI生成。原创 2024-10-21 22:44:14 · 1164 阅读 · 0 评论 -
Datawhale 扣子Bot开发Task3笔记
节点的增加,工作流的整个构架需要对自己所需要的的工作流的功能进行设计。节点的使用注意子任务的分区,这样方便调试的时候找到报错的节点,调整参数和工作流的结构。注意节点参数的选取,代码中节点参数名称的引用,不同节点参数输入的使用规范,检查各个节点是都正确链接等。如(案例选取DatawhaleTask3教程)生成一个随机数的工作流,需要加入一个大模型(用于提取出随机数长度)和两个代码节点(一个用于输入变量需要生成随机数的长度,一个用于生成对应长度的随机数)。以下是扣子的工作流5个实践范例。扣子 - 文档中心。原创 2024-10-16 23:29:26 · 1278 阅读 · 0 评论 -
Datawhale 扣子Bot开发Task2笔记
扣子(coze)智能体prompt关键词学习原创 2024-10-15 23:02:21 · 916 阅读 · 0 评论 -
Datawhale 扣子Bot开发Task1笔记
扣子(coze)是字节面向用户提供的一个AI应用端的产品,其核心服务是为用户提供一个快速开发AI应用的平台,用于解决多种多样的AI应用场景;其中Coze是字节在海外推出的应用版本,其相应的国内版的产品名称叫“扣子”,海外版和国内版整体产品形态基本差不多,具体使用模型和插件等能力稍有不同,以下我们主要以国内版扣子研究为主;“扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 Bot,并将 Bot 发布到各个社交平台、通讯软件或部署到网站等其他渠道。原创 2024-10-12 23:05:18 · 964 阅读 · 0 评论 -
Datawhale X 魔塔 AI夏令营 AIGC方向Task3
GUI 是 "Graphical User Interface"(图形用户界面)的缩写。简单来说,GUI 就是你在电脑屏幕上看到的那种有图标、按钮和菜单的交互方式。ComfyUI 是一个开源的用户界面工具,通常用于图形界面的构建和设计,尤其是在深度学习和数据处理领域。它提供了一套工具和组件,帮助用户创建定制化的界面,以便更方便地与模型和数据进行交互。ComfyUI核心模块分别由模型加载器、提示词管理器、采样器、解码器组成。原创 2024-08-17 21:53:33 · 817 阅读 · 0 评论 -
Datawhale X 魔塔 AI夏令营 AIGC方向Task2
AIGC(Artificial Intelligence Generated Content)领域涉及使用人工智能技术生成各种类型的内容,包括文本、图像、音频和视频。这个领域的快速发展和广泛应用引起了广泛关注,涵盖了多个技术和应用方向。这里主要是文本生成、图像生成、音频生成、视频生成四个方向。这里主要介绍图像生成。图像生成需包含生成对抗网络(GANs): 使用生成对抗网络生成高质量图像。GANs包括一个生成器和一个判别器,通过对抗训练生成逼真的图像。原创 2024-08-14 22:55:15 · 1205 阅读 · 0 评论 -
Datawhale X 魔塔 AI夏令营 AIGC方向Task1
OpenPose姿势控制输入是一张姿势图片(或者使用真人图片提取姿势)作为AI绘画的参考图,输入prompt后,之后AI就可以依据此生成一副相同姿势的图片;Canny精准绘制输入是一张线稿图作为AI绘画的参考图,输入prompt后,之后AI就可以根据此生成一幅根据线稿的精准绘制。Hed绘制Hed是一种可以获取渐变线条的线稿图控制方式,相比canny更加的灵活。深度图Midas输入是一张深度图,输入prompt后,之后AI就可以根据此生成一幅根据深度图的绘制。颜色color控制。原创 2024-08-09 19:41:00 · 1015 阅读 · 0 评论 -
Datawhale AI夏令营——催化反应产率预测方向Task3
tokenizer,鉴于SMILES的特性,这里需要自己定义tokenizer和vocab# 这里直接将smiles str按字符拆分,并替换为词汇表中的序号def __init__(self, pad_token, regex, vocab_file, max_length): #初始化函数self.pad_token = pad_token #从参数中获取填充标记self.regex = regex #从参数中获取正则表达式模式。原创 2024-08-03 23:53:44 · 594 阅读 · 0 评论 -
Datawhale AI夏令营——催化反应产率预测方向Task2
定义RNN模型class RNNModel(nn.Module): #类定义'''num_embed: 嵌入层的大小,即词嵌入的维度。input_size: 输入数据的特征维度。hidden_size: RNN隐藏状态的大小(维度)。output_size: 输出层的大小,即模型最终输出的维度。num_layers: RNN的层数。dropout: Dropout的比例,用于控制模型的过拟合。device: 指定模型在哪个设备上运行,如CPU或GPU。'''原创 2024-07-31 23:52:01 · 810 阅读 · 0 评论 -
Datawhale AI夏令营——催化反应产率预测方向Task1
小白学习笔记,文章有误的地方请各位大佬温和指出。原创 2024-07-28 22:52:32 · 877 阅读 · 0 评论