【神经网络基础】矩阵的运算

一、矩阵的加法与减法:

1、运算规则

简言之,两个矩阵相加减,即它们相同位置的元素相加减!
注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.
2、 运算性质 (假设运算都是可行的)
  满足交换律和结合律
  交换律  ;;
  结合律  :

 

二、矩阵与数的乘法

1、 运算规则
数λ乘矩阵A,就是将数λ乘矩阵A中的每一个元素,记为λA或Aλ.
特别地-A,称称为的负矩阵
2、 运算性质
满足结合律和分配律
结合律:
分配律:

三、矩阵与矩阵的乘法

1、 运算规则
,则A与B的乘积是C = AB这样一个矩阵:
(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即
{ij}){m*n} C=(cij)m∗n
(2) C的第i行第j列的元素
{ij} Cij由A的第i行元素与B的第j列元素对应相乘,再取乘积之和.

2、 运算性质(假设运算都是可行的)

 

 

四、矩阵的转置

定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作或.

2、运算性质(假设运算都是可行的)

对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.

五、方阵的行列式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值