这个顶会论文复现比赛,单篇最高现金奖3W!

4fbac7ba7f5ff7f7a38399bbaa8dd58b.gif

飞桨论文复现挑战赛(第六期)和春天一起来啦!本次挑战赛再度升级,无论是奋战过前五期比赛的复现冠军,还是首次接触论文复现的潜力选手,都有惊喜赛题任务等你来挑战。

论文复现是深入掌握前沿模型原理的最优方式,通过比赛你不仅会获得自身飞速成长,同时还有百万奖金等你瓜分!

本次大赛除了经典的顶会论文复现挑战赛外,还增加了飞桨特色模型挑战赛,赛题多样,难度进阶,奖励加倍!

百度飞桨是中国首个自主研发、功能丰富、开源开放的产业级深度学习平台。自从2020年正式发布飞桨框架2.0版本以来,飞桨已全面升级动态图相关功能,并带来了更加成熟完备的API,本次比赛将采用飞桨2.2版本动态图功能完成论文复现,诚邀你的加入。

1b17b3aefbc654bacd3d05e8def1c5f2.png

 赛程赛制 

本次比赛设立顶会论文复现赛道飞桨特色模型赛道两种比赛形式。 

1. 顶会论文复现赛道。参赛选手需要使用飞桨框架完成顶会论文复现,达到赛事精度要求后,提交代码并验证。经技术委员会评估,每篇论文最先达到精度要求的队伍获胜 ,将获得该论文的对应奖金。 

2. 飞桨特色模型赛道。共包含3项任务,参赛选手完成如下3个任务中任意一项,均可获得对应步骤的奖金:

(1) 完成论文复现

(2) 完成赛题基本指标

(3) 持续优化指标,达到挑战指标。

更多详细内容,扫码了解

b6ce9b337ae64efeff6784220e9f193d.png

比赛论文方向包括:图像分类、目标检测、图像分割、图像生成、OCR、异常检测、GAN、推荐系统、自然语言处理等多个方向,同时有3D视觉、视频方向、科学计算等前沿论文可供复现选择。 

参赛期间,飞桨 AI Studio平台将为你提供在线编程环境、免费GPU算力、海量开源算法和开放数据集等,还有百度高级研发工程师一对一交流指导,帮助你更快创建和部署模型,在参赛之路上,为你保驾护航。

c2081fc406b749dcb521bebb056d479e.png

 丰厚奖励 

01 现金奖励

比赛总现金奖池达百万,100+篇论文任你选择:

b4b3324e2d631540e25fbb2c763a7580.png

新增的飞桨特色模型挑战赛,根据任务类型提供对应奖励:

3150cc85bfbca41ff6017ccf8088a15d.png

02 荣誉奖励

1. 比赛中表现优异的同学能获得百度实习机会

2. 冠军模型有机会获得飞桨官方认证,提升开发者在开源生态中的影响力。

547fee49c6c32dd55dd42410148020a2.png

 日程安排 

8a2f6f4d6f82af39385aba875b90b2e3.png

比赛采用实时榜单模式,每篇论文最先达到精度要求,完成验收的队伍将获得该论文对应奖金,赶快认领论文参赛吧!

d0688dc5677d5a163f315c9999f5dd07.png

 参赛方式 

01 参赛对象

本次大赛面向全社会开放,相关领域的个人、高校、科研机构、企业单位等人员均可报名参赛。

特别注意:大赛主办、协办单位,以及有机会接触赛题背景业务及数据的员工不得参赛。

02 参赛要求

1. 本次比赛每支参赛队伍的人数不超过3人,允许跨单位自由组队,但每人只能参加一支队伍。

2. 参赛选手报名必须保证所提供的个人信息真实、准确。如有虚假,组委会将保留停止发放奖金的权利。

defc6420855095c48d48a0dfd02f7b4a.png

扫码报名

4badc0c7f83b7f5e5d61614ef7fedb49.png

比赛QQ群:602104223

8e67b04fbd4bcbacda939c1b2f91b80c.png

45d0592d246c23a3d1fae34e29e90158.png

疫情会退散,春暖花会开。论文复现挑战赛开启了一次又一次旅程,不断创新,不断进步,赛事再度升级,奖励依旧丰厚,快带上小伙伴一起参加,一起赶上这场春天的约定吧~助力科研成果落地,为中国开源生态贡献出你的力量!

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

3b405e7098556deaf497564c776e2d77.png

### 如何复现深度学习论文 #### 选择合适的论文 为了成功复现出深度学习论文中的成果,挑选具有清晰描述和技术细节的论文至关重要。优先考虑那些提供了开源代码或详尽实说明的文章[^2]。 #### 获取必要的资源和支持环境 许多尖会议论文背后都有大量的计算资源支持,这使得一些实验难以被完全复制。然而,随着云计算服务的发展,如Google Colab、AWS等平台可以提供足够的GPU/TPU来满足大多数需求。此外,部分研究机构也会公开其使用的框架版本和依赖项列表,有助于构建一致性的开发环境[^3]。 #### 阅读理解与笔记整理 深入研读选定的论文全文,特别是方法论部分,并做好详细的笔记记录下每一个步骤的具体操作方式及其背后的原理。对于不熟悉的术语或者概念可以通过查阅其他文献资料加深了解。同时注意作者提到的数据集获取途径及预处理手段[^1]。 #### 实验重过程 基于上述准备工作,在本地环境中搭建相同的软件栈之后就可以着手尝试运行官方给出的baseline model了。如果遇到性能差异较大的情况,则需仔细对比配置参数设置是否一致;另外还需关注随机种子初始化等因素的影响以减少不确定性带来的偏差。 #### 结果验证分析 当能够稳定获得接近原作报告的结果后,进一步开展超参调优工作试图超越已有水平。在此过程中要保持严谨的态度对待每一次改动所带来的变化趋势观察并及时调整方向直至达到满意的效果为止。 ```python import torch from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor()]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) def load_data(batch_size): """加载MNIST数据集""" data_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) return data_loader ``` #### 文献回顾与其他案例借鉴 除了专注于手头的任务外,定期浏览最新的研究成果同样重要。因为新的发往往能带来启发式的思路改进有方案或是解决当前面临的难题。加入特定主题的兴趣小组参与讨论交流也是不错的选择之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值