本文是LLM系列文章,针对《QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering》的翻译。
摘要
使用来自预训练语言模型(LM)和知识图谱(KG)的知识回答问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型KG中识别相关知识,以及(ii)对QA上下文和KG执行联合推理。在这项工作中,我们提出了一个新的模型QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关性评分,其中我们使用LMs来估计KG节点相对于给定QA上下文的重要性,以及(ii)联合推理,其中我们将QA上下文和KG连接起来形成联合图,并通过图神经网络相互更新它们的表示。我们在常识(CommonsenseQA,OpenBookQA)和生物医学(MedQA USMLE)领域的QA基准上评估我们的模型。QA-GNN优于现有的LM和LM+KG模型,并表现出执行可解释和结构化推理的能力,例如,正确处理问题中的否定。我们的代码和数据可在https://github.com/michiyasunaga/qagnn上获得。