QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering

828 篇文章

已下架不支持订阅

QA-GNN模型通过相关性评分和联合推理解决使用预训练语言模型和知识图谱回答问题的挑战。该模型在常识和生物医学领域的问答基准上表现出色,超越现有模型并能进行可解释的结构化推理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering》的翻译。

QA-GNN:基于语言模型和知识图谱的问答推理

摘要

使用来自预训练语言模型(LM)和知识图谱(KG)的知识回答问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型KG中识别相关知识,以及(ii)对QA上下文和KG执行联合推理。在这项工作中,我们提出了一个新的模型QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关性评分,其中我们使用LMs来估计KG节点相对于给定QA上下文的重要性,以及(ii)联合推理,其中我们将QA上下文和KG连接起来形成联合图,并通过图神经网络相互更新它们的表示。我们在常识(CommonsenseQA,OpenBookQA)和生物医学(MedQA USMLE)领域的QA基准上评估我们的模型。QA-GNN优于现有的LM和LM+KG模型,并表现出执行可解释和结构化推理的能力,例如,正确处理问题中的否定。我们的代码和数据可在https://github.com/michiyasunaga/qagnn上获得。

1 引言

2 问题定义

3 方法:QA-GNN

4 实验

5 相关工作和讨论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值