How to Bridge the Gap between Modalities: A Comprehensive Survey on Multi-modal Large Language Model

828 篇文章

已下架不支持订阅

本文详细调查了多模态大型语言模型(MLLMs),探讨其处理文本和视觉数据的能力,如生成图像叙述和视觉问答。尽管显示出巨大的潜力,但MLLMs在多模态语义理解上仍存在挑战,可能导致错误并带来风险。本文分析了模态对齐方法,包括多模态转换器、感知器、工具辅助和数据驱动方法,为理解与改进多模态处理提供关键洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《How to Bridge the Gap between Modalities: A Comprehensive Survey on Multi-modal Large Language Model》的翻译。

摘要

本文探讨了多模态大型语言模型(MLLMs),它集成了GPT-4等LLM来处理文本和视觉等多模态数据。MLLMs展示了生成图像叙述和回答基于图像的问题等功能,弥合了现实世界人机交互的差距,并暗示了通往通用人工智能的潜在途径。然而,MLLMs在处理多模态语义缺口方面仍然面临挑战,这可能导致错误生成,给社会带来潜在风险。选择合适的模态对齐方法至关重要,因为不合适的方法可能需要更多的参数,性能改进有限。本文旨在探索LLM的模态对齐方法及其现有能力。实施模式调整使LLM能够解决环境问题并提高可访问性。该研究将MLLM中现有的模态对齐方法分为四组:(1)将数据转换为LLM能够理解的多模态转换器;(2) 多模态感知器,以改进LLM感知不同类型数据的方式;(3) 工具帮助利用工具将数据更改为一种通用格式,通常为文本;以及(4)数据驱动方法,教导LLM理解数据集中特定类型的数据。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值