本文是LLM系列文章,针对《How to Bridge the Gap between Modalities: A Comprehensive Survey on Multi-modal Large Language Model》的翻译。
摘要
本文探讨了多模态大型语言模型(MLLMs),它集成了GPT-4等LLM来处理文本和视觉等多模态数据。MLLMs展示了生成图像叙述和回答基于图像的问题等功能,弥合了现实世界人机交互的差距,并暗示了通往通用人工智能的潜在途径。然而,MLLMs在处理多模态语义缺口方面仍然面临挑战,这可能导致错误生成,给社会带来潜在风险。选择合适的模态对齐方法至关重要,因为不合适的方法可能需要更多的参数,性能改进有限。本文旨在探索LLM的模态对齐方法及其现有能力。实施模式调整使LLM能够解决环境问题并提高可访问性。该研究将MLLM中现有的模态对齐方法分为四组:(1)将数据转换为LLM能够理解的多模态转换器;(2) 多模态感知器,以改进LLM感知不同类型数据的方式;(3) 工具帮助利用工具将数据更改为一种通用格式,通常为文本;以及(4)数据驱动方法,教导LLM理解数据集中特定类型的数据。