MM-LLMs: Recent Advances in MultiModal Large Language Models

828 篇文章

已下架不支持订阅

本文详尽调查了MM-LLMs的发展,从模型架构、训练策略到SOTA模型的表现,探讨了未来的研究方向。通过对122个MM LLM的分析,揭示了提升模型性能的关键因素,并维护实时跟踪网站以跟进最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《MM-LLMs: Recent Advances in MultiModal Large Language Models》的翻译。

摘要

在过去的一年里,多模态大型语言模型(MM-LLM)取得了长足的进步,通过具有成本效益的训练策略,增强了现成的LLM,以支持MM的输入或输出。由此产生的模型不仅保留了LLM固有的推理和决策能力,而且还赋予了各种MM任务权力。在本文中,我们提供了一个全面的调查,旨在促进MM LLM的进一步研究。最初,我们概述了模型架构和训练管道的一般设计公式。随后,我们介绍了一个包含122个MM LLM的分类法,每个LLM都有其特定的配方。此外,我们回顾了选定的MM LLM在主流基准上的表现,并总结了提高MM LLM效力的关键训练配方。最后,我们探索了MM LLM的有希望的方向,同时维护了一个实时跟踪网站以了解该领域的最新发展。我们希望这项调查有助于MM LLM领域的持续发展。

1 引言

2 模型架构

3 训练管道

4 SOTA MM-LLMs

5 基线和性能

已下架不支持订阅

### 跨域学习的多模态大模型 #### 多模态大语言模型的发展趋势 近年来,随着人工智能领域内数据量的增长和技术的进步,多模态大型语言模型(MM-LLMs)得到了快速发展。这些模型能够处理来自不同源的数据并融合多种类型的输入,如文本、图像和音频等[^1]。 #### 技术挑战与解决方案 构建有效的跨域学习架构面临诸多挑战,其中包括但不限于如何有效地表示异构信息以及设计可以适应新任务而无需重新训练整个系统的机制。针对这些问题的研究提出了各种方法论上的改进措施,在保持原有性能的同时扩展到新的应用场景中去[^2]。 #### 实现案例分析 具体来说,《Attentive Multiview Text Representation for Differential Diagnosis》一文中介绍了一种用于差异诊断的方法,该方法通过引入注意力机制来增强对于不同类型视图间关系的理解能力;而在《MM-LLms:Recent Advances in MultiModal Large Language Models》则总结了一些最新的进展成果,并讨论了未来可能发展的方向。 ```python # Python代码示例:加载预训练好的多模态模型(假设使用transformers库) from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") text_input = "example sentence" image_path = "./path_to_image.jpg" inputs = tokenizer(text_input, return_tensors="pt") outputs = model(**inputs) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值