Navigating the OverKill in Large Language Models

828 篇文章

已下架不支持订阅

本文研究大型语言模型(LLM)可能存在的过度使用问题,发现模型对某些词汇如“杀死”的过度关注。为解决此问题,提出了自对比解码(Self-CD)策略,一种无需训练、模型无关的方法,能有效降低拒绝率并保持安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Navigating the OverKill in Large Language Models》的翻译。

摘要

大型语言模型经过精心调整,既有益又无害。然而,最近的研究指出了一种潜在的过度使用,这意味着模型可能会拒绝回答善意的查询。在本文中,我们通过探索模型如何处理和确定查询的安全性来研究过度使用的因素。我们的研究结果揭示了模型中捷径的存在,导致人们过度关注“杀死”等有害词汇,强调安全的提示会加剧过度使用。基于这些见解,我们引入了自对比解码(Self-CD),这是一种无训练和模型无关的策略,以缓解这种现象。我们首先通过在响应包括或省略对安全的强调的系统提示时放大模型输出分布的差异来提取这种过度关注。然后,我们通过对比解码来淡化模型的过度关注,从而确定最终的下一个表征预测。经验结果表明,我们的方法实现了拒绝率平均降低20%,而对安全性几乎没有影响。

1 引言

2 背景

3 中试实验与分析

4 自对比解码

5 实验

6 相关工作

7 结论

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值