DISTILLM: Towards Streamlined Distillation for Large Language Models

828 篇文章

已下架不支持订阅

DISTILLM是一种针对自回归语言模型的知识蒸馏框架,它提出了一种新的偏斜Kullback-Leibler散度损失和自适应非策略方法,解决了现有方法的效率和计算成本问题。实验表明,DISTILLM在构建高性能学生模型时速度提高了4.3倍,且在指令跟随等任务上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《DISTILLM: Towards Streamlined Distillation for Large Language Models》的翻译。

DISTILLM:面向大型语言模型的流线蒸馏

摘要

知识蒸馏(KD)被广泛用于将教师模型压缩为较小的学生模型,在保留模型能力的同时降低其推理成本和内存占用。然而,当前用于自回归序列模型(例如,大型语言模型)的KD方法缺少标准化的目标函数。此外,最近使用学生生成的输出来解决训练推理不匹配的问题,显著增加了计算成本。为了解决这些问题,我们引入了DISTILLM,这是一个用于自回归语言模型的更有效的KD框架。DISTILLM包括两个组成部分:(1)一种新的偏斜Kullback-Leibler发散损失,我们在其中揭示并利用其理论特性;(2)一种自适应的非策略方法,旨在提高利用学生生成输出的效率。广泛的实验,包括指令跟随任务,证明了DISTILLM在构建高性能学生模型方面的有效性,同时与最近的KD方法相比,速度提高了4.3倍。

1 引言

2 背景

3 DISTILLM

4 实验

已下架不支持订阅

### 如何复现 InstructBLIP 通用视觉-语言模型及其指令微调方法 #### 准备工作环境 为了成功复现 InstructBLIP 模型,首先需要准备适当的工作环境。这通常涉及安装必要的软件包和依赖项。建议使用 Python 和 PyTorch 来构建此项目。 ```bash conda create -n instructblip python=3.8 conda activate instructblip pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 获取数据集 InstructBLIP 的训练依赖于大规模的数据集来学习丰富的特征表示。这些数据集应包含配对的图像和文本描述。常用的数据集包括 COCO Captions, Visual Genome 等[^2]。 #### 下载预训练模型权重 由于从头开始训练这样的大型模型非常耗时且计算资源密集,因此推荐下载官方发布的预训练模型权重作为起点。可以从 GitHub 或其他公开平台获取最新的预训练版本。 #### 实施指令微调流程 按照论文中的指导,在已有的基础之上实施特定任务导向的指令微调过程。具体来说: - **定义目标任务**:明确希望模型执行的任务类型,比如生成图片说明、问答等。 - **调整输入格式**:确保输入遵循预期结构,即每条记录由一对或多张图像以及相应的自然语言命令组成。 - **修改损失函数**:根据所选任务定制化设计适合的优化目标。 ```python from transformers import BlipForConditionalGeneration, BlipProcessor processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def fine_tune_model(training_data): optimizer = AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): model.train() for batch in training_data: inputs = processor(images=batch['image'], text=batch['instruction'], return_tensors="pt", padding=True) outputs = model(**inputs) loss = outputs.loss optimizer.zero_grad() loss.backward() optimizer.step() fine_tune_model(prepared_dataset) ``` 通过上述步骤可以有效地实现 InstructBLIP 模型的本地部署与进一步开发应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值