Exploring the Capabilities of Multimodal Large Language Models on Medical Challenge Problems

828 篇文章

已下架不支持订阅

本文详尽评估了谷歌的Gemini多模态大型语言模型在医学推理、幻觉检测和医学视觉问答任务中的性能。虽然Gemini在某些医学科目展示出理解力,但诊断准确性和处理复杂视觉问题方面落后于MedPaLM 2和GPT-4。Gemini易产生幻觉,提示其在可靠性和可信度上的改进需求。研究还提出了标准化评估工具,以推动未来模型发展并强调负责任和透明的进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Gemini Goes to Med School: Exploring the Capabilities of Multimodal Large Language Models on Medical Challenge Problems & Hallucinations》的翻译。

Gemini走进医学院:探索多模态大语言模型在医学挑战问题和幻觉方面的能力

摘要

大型语言模型在医疗保健行业具有潜在的价值,但通过严格的评估验证其安全性和有效性至关重要。为此,我们在医学推理、幻觉检测和医学视觉问答任务中全面评估了开源LLM和谷歌新的多模式LLM Gemini。虽然Gemini表现出了能力,但在诊断准确性方面落后于MedPaLM 2和GPT-4等最先进的模型。此外,Gemini在医疗VQA数据集上的准确率为61.45%,显著低于GPT-4V 88%的得分。我们的分析表明,Gemini非常容易产生幻觉、过度自信和知识差距,这表明如果不加批判地部署,就会有风险。我们还按受试者和测试类型进行了详细分析,为开发人员和临床医生提供了可操作的反馈。为了降低风险,我们采用了提高绩效的激励策略。此外,我们还发布了一个用于医学LLM评估的Python模块,并在医学领域LLM的huggingface上建立了一个专门的排行榜,从而促进了未来的研发。Python模块位于https://github.com/promptslab/Rosett

已下架不支持订阅

### 大规模掩码视觉表征学习的极限与挑战 大规模掩码视觉表征学习(Masked Visual Representation Learning, MVRL)在计算机视觉领域取得了显著进展,但仍面临诸多局限性和挑战。 #### 数据需求与计算资源消耗 MVRL依赖于大量标注数据来训练深层神经网络。然而,获取高质量的大规模图像数据集不仅成本高昂而且耗时费力。此外,处理这些海量的数据需要强大的硬件支持和长时间的运算周期,这对研究机构和个人开发者构成了巨大障碍[^1]。 #### 表征能力瓶颈 尽管通过自监督方法可以有效减少对手动标签的需求并提高泛化性能,但在某些复杂场景下,当前模型可能无法捕捉到足够的语义信息或空间关系特征,从而影响最终效果。例如,在细粒度分类任务中,仅依靠局部区域遮挡策略难以充分表达目标对象的整体特性[^2]。 #### 泛化性不足 现有技术往往针对特定类型的变换进行了优化设计,当遇到未曾见过的新颖变化形式时表现不佳。比如旋转角度较大、尺度差异明显等情况可能导致预训练阶段学到的知识失效,进而降低迁移至下游应用的效果稳定性。 #### 跨模态融合难题 为了实现更加鲁棒可靠的多源感知理解功能,如何有效地将来自不同感官通道的信息结合起来成为了一个亟待解决的问题之一。目前大多数工作主要集中在单一视域内的探索上,对于跨媒体间交互作用机制的研究相对较少,这限制了其实际应用场景范围扩展的可能性。 ```python import torch.nn as nn class MaskedImageModel(nn.Module): def __init__(self): super(MaskedImageModel, self).__init__() # Define layers here def forward(self, x): pass # Implement forward propagation logic ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值