Fine-Tuning Large Language Models with Sequential Instructions

本文探讨了大型语言模型(LLM)在执行序列指令时的困难,提出顺序指令调优(SIT)策略,通过自动扩展指令数据增强LLM处理多步任务的能力。实验表明,经过SIT的模型在推理、多语言和多模态任务中表现优于传统调优基线,且对未见过的任务和提示具有一定的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Fine-Tuning Large Language Models with Sequential Instructions》的翻译。

摘要

大型语言模型(LLM)很难在单个查询中遵循一系列指令,因为它们可能会忽略或误解其中的一部分。这会削弱它们在复杂问题中的性能,这些问题的解决方案需要多个中间步骤,如多语言(翻译然后回答)和多模态(说明然后回答)任务。我们用LLaMA-2 70B和Mixtral-8×7B这样大的开源LLM实证验证了这一点。针对当前数据中顺序指令的稀缺性,我们提出了顺序指令调优(SIT),这是一种简单而有效的策略,可以自动增加指令调优数据,并使LLM具备执行多个顺序指令的能力。在探索了现有数据集(如Alpaca)中具有广泛中间任务的交错指令后,我们发现在涉及推理、多语言和多模态能力的下游任务中,顺序指令调整模型始终优于传统指令调整基线。为了进一步阐明我们的技术,我们分析了对抗性中间文本、看不见的任务、提示措辞、任务数量和提示长度如何影响SIT。我们希望这种方法将为复杂任务的指令调整开辟新的研究途径。我们在https://github.com/hanxuhu/Seq_IT发布代码。

1 引言</

### Prompt Optimizer Tools and Techniques in AI or NLP Prompt optimization plays a critical role in enhancing the performance of large language models (LLMs) and natural language processing (NLP) systems. Below are some key methods and tools used for prompt optimization: #### 1. **Few-Shot Learning** In few-shot learning, the model is provided with a small number of examples within the prompt itself to guide its behavior[^1]. This approach leverages the inherent capabilities of pre-trained models to generalize from limited data. #### 2. **Chain-of-Thought Reasoning** This technique involves breaking down complex tasks into simpler subtasks that the model can reason about step-by-step[^3]. By structuring prompts to encourage sequential reasoning, better results can be achieved even without extensive retraining. #### 3. **Instruction Tuning** Instruction tuning focuses on adapting models to follow specific instructions more effectively through fine-tuning on datasets containing diverse instruction-following examples[^5]. For instance, Chinese-Alpaca-Plus-13B was developed using this method, where LLaMA-13B was fine-tuned on conversationally rich datasets generated by ChatGPT. #### 4. **Reinforcement Learning from Human Feedback (RLHF)** RLHF combines reinforcement learning with human feedback to optimize model outputs according to desired criteria[^4]. Algorithms like Proximal Policy Optimization (PPO) have been successfully applied here, allowing models to learn optimal behaviors based on both environmental rewards and direct human input. #### 5. **Automated Prompt Engineering** Several automated approaches exist for generating effective prompts programmatically. These include evolutionary algorithms, genetic programming, and Bayesian optimization techniques designed specifically for hyperparameter search spaces related to prompting strategies[^2]. ```python import random def generate_random_prompt(template="Answer the following question: {question}", placeholders={"{question}": ["What is your name?", "How old are you?"]}): """Generates a randomized version of the given template.""" filled_placeholder = {key: random.choice(values) for key, values in placeholders.items()} return template.format(**filled_placeholder) print(generate_random_prompt()) ``` The above Python snippet demonstrates how one might implement basic automation for creating varied instances of predefined templates suitable for experimentation purposes during development phases involving different types of queries. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值