Editing Conceptual Knowledge for Large Language Models

本文探讨了如何编辑大型语言模型(LLM)的概念知识,通过建立ConceptEdit基准数据集和新评估指标,研究LLM的概念知识编辑能力。实验显示现有方法在修改概念时可能影响实例知识,需要更深入理解LLM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Editing Conceptual Knowledge for Large Language Models》的翻译。

摘要

最近,人们对大型语言模型(LLM)的知识编辑越来越感兴趣。目前的方法和评估只是探索实例级的编辑,而LLM是否具有修改概念的能力仍不清楚。本文通过构建一个新的基准数据集ConceptEdit并建立一套新的评估指标,率先研究了LLM的概念知识编辑。实验结果表明,尽管现有的编辑方法可以在一定程度上有效地修改概念级定义,但它们也有可能扭曲LLM中的相关实例化知识,导致性能较差。我们预计,这将激励在更好地理解LLM方面取得进一步进展。

1 引言

2 背景

3 概念编辑

4 基准构造

5 实验

6 相关工作

7 结论

我们介绍了LLM的概念知识编辑任务,以及新的基准ConceptEdit和评估指标。从实验中,我们观察到,现有的编辑方法在修改概念知识时,对底层实例的影响非常有限;因此,LLM中更强大的技术和更好的概念理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值