LLM-Ensemble: Optimal Large Language Model Ensemble Method for E-commerce Product Attribute Value

本文是LLM系列文章,针对《LLM-Ensemble: Optimal Large Language Model Ensemble Method for E-commerce Product Attribute Value Extraction》的翻译。

LLM集成:电子商务产品属性值提取的最优大语言模型集成方法

摘要

产品属性值提取是自然语言处理(NLP)和当代电子商务行业的关键组成部分。提供精确的产品属性值是确保高质量推荐和提高客户满意度的基础。最近出现的大型语言模型(LLM)在许多属性提取任务中表现出了最先进的性能,而不需要特定领域的训练数据。然而,由于数据、架构和超参数的多样性,不同的LLM表现出不同的优势和劣势。这种变化使它们相互补充,没有单一的LLM支配所有其他LLM。考虑到LLM的不同优势和劣势,有必要开发一种利用其互补潜力的集成方法。在本文中,我们提出了一种称为LLM集成的新算法来集成不同LLM的输出,用于属性值提取。我们迭代地学习不同LLM的权重,以将标签与权重聚合,从而预测最终的属性值。我们提出的方法不仅可以在理论上证明是最优的,而且可以确保高效的计算、快速的收敛和安全的部署。我们还在沃尔玛的内部数据上对各种最先进的LLM进行了广泛的实验,包括Llama2-13B、Llama2-70B、PaLM-2、GPT-3.5和GPT-4。我们的离线指标表明,LLM集成方法优于沃尔玛内部数据集上所有最先进的单个LLM。这种方法已在几种生产模式中推出,从而提高了商品总量&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值