IMPROVING QUANTIZED KNOWLEDGE DISTILLATION VIA SIGNAL PROPAGATION ANALYSIS FOR LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《OH! WE FREEZE: IMPROVING QUANTIZED KNOWLEDGE DISTILLATION VIA SIGNAL PROPAGATION ANALYSIS FOR LARGE LANGUAGE MODELS》的翻译。

哦!我们冻结:通过信号传播分析改进大型语言模型的量化知识蒸馏

摘要

大型生成模型,如大型语言模型(LLM)和扩散模型,分别彻底改变了NLP和计算机视觉领域。然而,它们的推理速度慢、计算量和内存需求高,使得将它们部署在边缘设备上具有挑战性。在这项研究中,我们提出了一种轻量级的量化感知微调技术,使用知识蒸馏(KD-QAT)来提高4位加权量化LLM的性能,使用常见的数据集来实现流行的语言用例,即设备聊天应用程序。为了改进这种微调范式,作为主要贡献,我们通过实证研究训练过程中的梯度传播来深入了解KD-QAT的稳定性,以更好地理解基于KDQAT的方法对低位量化误差的脆弱性。基于我们的见解,我们提出了ov-freeze,这是一种稳定KD-QAT过程的简单技术。最后,我们在4位量化级别上对流行的7B LLaMAv2 Chat模型进行了实验,并证明ov-freeze导致了接近浮点的精度性能,即在常识推理基准上的精度损失小于0.7%。

1 引言

2 相关工作

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值