本文是LLM系列文章,针对《OH! WE FREEZE: IMPROVING QUANTIZED KNOWLEDGE DISTILLATION VIA SIGNAL PROPAGATION ANALYSIS FOR LARGE LANGUAGE MODELS》的翻译。
摘要
大型生成模型,如大型语言模型(LLM)和扩散模型,分别彻底改变了NLP和计算机视觉领域。然而,它们的推理速度慢、计算量和内存需求高,使得将它们部署在边缘设备上具有挑战性。在这项研究中,我们提出了一种轻量级的量化感知微调技术,使用知识蒸馏(KD-QAT)来提高4位加权量化LLM的性能,使用常见的数据集来实现流行的语言用例,即设备聊天应用程序。为了改进这种微调范式,作为主要贡献,我们通过实证研究训练过程中的梯度传播来深入了解KD-QAT的稳定性,以更好地理解基于KDQAT的方法对低位量化误差的脆弱性。基于我们的见解,我们提出了ov-freeze,这是一种稳定KD-QAT过程的简单技术。最后,我们在4位量化级别上对流行的7B LLaMAv2 Chat模型进行了实验,并证明ov-freeze导致了接近浮点的精度性能,即在常识推理基准上的精度损失小于0.7%。