Can Large Language Models do Analytical Reasoning?

本文是LLM系列文章,针对《Can Large Language Models do Analytical Reasoning?》的翻译。

大型语言模型能进行分析推理吗?

摘要

本文以体育分析推理为切入点,探讨了最前沿的大型语言模型。我们的分析推理体现了让大型语言模型计算NBA和NFL比赛中每支球队在一个季度内得分的任务。我们的重大发现有两个方面。首先,我们发现在我们使用的所有模型中,GPT-4的有效性突出,其次是Claude-2.1,GPT-3.5、Gemini Pro和Llama-2-70b落后。具体来说,我们比较了三种不同的提示技术和分而治之的方法,发现后者是最有效的。我们的分而治之方法将逐场数据分解为更小、更易于管理的部分,单独解决每个部分,然后将它们聚合在一起。除了分而治之的方法,我们还探索了思想链(CoT)策略,该策略显著改善了某些模型的结果,尤其是GPT-4和Claude-2.1,其准确率显著提高。然而,CoT策略对GPT-3.5和Gemini Pro等其他模型的性能影响可以忽略不计,甚至是有害的。其次,令我们惊讶的是,我们观察到,包括GPT-4在内的大多数模型,尽管在计算NFL季度得分方面表现强劲,但仍难以准确计算NBA季度的总得分。这使我们能够通过广泛的实验进一步研究影响分析推理任务复杂性的因素,通过实验我们得出结论,任务复杂性取决于上下文的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值