Interpretable User Satisfaction Estimation for Conversational Systems with Large Language Models

本文是LLM系列文章,针对《Interpretable User Satisfaction Estimation for Conversational Systems with Large Language Models》的翻译。

具有大型语言模型的会话系统的可解释用户满意度估计

摘要

准确和可解释的用户满意度估计(USE)对于理解、评估和持续改进会话系统至关重要。用户对通用(ChatGPT和Bing Copilot)和面向任务(客服聊天机器人)对话系统中的不同对话模式表示满意或不满。现有的基于特征化ML模型或文本嵌入的方法在提取可推广模式方面存在不足,并且难以解释。在这项工作中,我们表明LLM可以比基于嵌入的方法更有效地从用户的自然语言话语中提取可解释的用户满意度信号。此外,LLM可以通过使用标记示例的监督的迭代提示框架来针对USE进行定制。我们提出的方法,用户满意度的监督提示准则(SPUR),不仅具有更高的准确性,而且更具可解释性,因为它通过具有详细细分的学习准则来评分用户满意度。

1 引言

2 问题定义和相关工作

3 SPUR

4 评估

5 结论和局限性

在本文中,我们提出了用户满意度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值