Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices

本文是LLM系列文章,针对《Securing Large Language Models: Threats, Vulnerabilities and
Responsible Practices》的翻译。

摘要

大型语言模型(LLM)极大地改变了自然语言处理(NLP)的格局。它们的影响涵盖了各种各样的任务,彻底改变了我们理解语言和生成的方式。尽管如此,LLM除了具有显著的实用性外,还引入了关键的安全和风险考虑因素。这些挑战需要仔细检查,以确保负责任的部署和防范潜在的漏洞。本研究论文从五个主题角度深入调查了与LLM相关的安全和隐私问题:安全和隐私担忧、对抗性攻击的漏洞、滥用LLM造成的潜在危害、应对这些挑战的缓解策略,同时确定了当前策略的局限性。最后,本文为未来的研究提供了有希望的途径,以加强LLM的安全性和风险管理。

1 引言

2 背景

3 LLM的安全和隐私问题

4 对抗性攻击和LLM漏洞

5 LLM的风险和失误

6 风险缓解策略

7 新机遇和未来研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值