SELF-DEMOS: Eliciting Out-of-Demonstration Generalizability in Large Language Models

本文是LLM系列文章,针对《SELF-DEMOS: Eliciting Out-of-Demonstration Generalizability
in Large Language Models》的翻译。

SELF-DEMOS:在大型语言模型中引入非演示泛化能力

摘要

大型语言模型(LLM)已经显示出有前景的情境学习(ICL)能力,只需很少的演示即可快速适应新任务。然而,目前的小样本方法严重依赖于高质量的、特定于查询的演示,而这些演示往往缺乏。当面临演示外(OOD)查询时,依赖于手工演示或外部检索器的方法可能会失败。为了弥合有限演示和面向对象查询之间的差距,我们提出了SELF-demos,这是一种新的提示方法,通过查询感知演示生成来激发LLM中固有的泛化能力。生成的演示在现有演示和给定查询之间进行战略性插值,将查询从OOD转换为ID。为了评估我们方法的有效性,我们手动构建了OODToolset,这是一个工具使用场景中的数据集,有300多个真实世界的API和1000个实例,每个实例由三个工具用例作为演示和一个OOD查询组成。对我们的数据集和两个公共数学基准的彻底实验表明,我们的方法在面向对象设计设置中可以超越最先进的基线。此外,我们还进行了一系列分析,以验证SELF-DEMOS的泛化能力,并提供更多见解。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值