QWEN2 TECHNICAL REPORT

本文是LLM系列文章,针对《QWEN2 TECHNICAL REPORT》的翻译。

摘要

本报告介绍了Qwen2系列,这是我们大型语言模型和大型多模态模型的最新成员。我们发布了一套全面的基础和指令调优语言模型,参数范围从5亿到720亿,包括密集模型和混合专家模型。Qwen2超越了包括其前身Qwen1.5在内的大多数先前的开放权重模型,并在语言理解、生成、多语言能力、编码、数学和推理等不同基准上表现出与专有模型相比的竞争性能。
旗舰模型Qwen2-72B表现卓越:在MMLU上为84.2,在GPQA上为37.9,在HumanEval上为64.6,在GSM8K上为89.5,在作为基础语言模型的BBH上为82.4。指令调整变体Qwen2-72B-Induce在MT Bench上达到9.1,在Arena Hard上达到48.1,在LiveCodeBench上获得35.7。此外,Qwen2展示了强大的多语言能力,精通约30种语言,涵盖英语、中文、西班牙语、法语、德语、阿拉伯语、俄语、韩语、日语、泰语、越南语等,突显了其多功能性和全球影响力。
为了促进社区创新和可访问性,我们在Hugging Face和ModelScope上公开了Qwen2模型权重,并在GitHub上提供了包括示例代码在内的补充材料。这些平台还包括用于量化、微调和部署的资源,促进了广泛的应用和研究工作。

03-10
### Qwen2 的 IT 相关信息 #### 模型架构解析 Qwen2 实现了一个基于 PyTorch 的大型语言模型 (LLM),其源码文件 `qwen2_model.py` 中包含了多个核心组件。这些组件涵盖了序列处理函数、模型的基础类定义、基本构建模块的设计、解码器层的具体实现以及完整的模型结构描述[^1]。 #### 推理部署方案 对于 Qwen2 这样的大规模模型,在实际应用中的高效推理是一个重要考量因素。官方文档提供了多样化的优化策略来支持不同的硬件平台和性能需求。具体来说,通过 hf transformers 库可以方便地加载并运行较小版本如 Qwen2-7B-Instruct;而对于更大规模的变种比如 Qwen2-72B 和 Qwen1.5-110B,则推荐采用 vllm、llama.cpp 或 Ollama 等工具来进行更高效的分布式计算或者利用 AWQ、GPTQ 技术实施量化操作以减少资源消耗[^2]。 #### 预训练数据集规模对比 值得注意的是,Qwen2 家族中最大的成员——Qwen-72B 已经接受了超过 3 万亿个标记的数据训练,这使得它在参数数量上超越了许多同类型的竞争对手,例如 Meta 发布的最大版 Llama-2 所使用的约 2 万亿个标记的数据集[^3]。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Instruct") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Instruct") input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值