MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering

本文是LLM系列文章,针对《MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering》的翻译。

摘要

大型语言模型(LLMs)有可能促进人工智能技术的发展,以协助医学专家提供交互式决策支持。LLM在医学问答方面取得的最先进的成绩证明了这一潜力,取得了令人瞩目的成绩,例如在执照医学考试中取得了及格成绩。然而,尽管令人印象深刻,但医疗应用所需的质量标准仍远未达到。目前,LLM仍然受到过时知识和产生幻觉内容倾向的挑战。此外,大多数评估医学知识的基准缺乏参考金解释,这意味着无法评估LLM预测的推理。最后,如果我们考虑对英语以外的语言进行LLM基准测试,情况尤其严峻,据我们所知,英语仍然是一个完全被忽视的话题。为了解决这些缺点,本文提出了MedExpQA,这是第一个基于医学考试的多语言基准,用于评估医学问答中的LLM。据我们所知,MedExpQA首次包含了由医生撰写的关于考试中正确和不正确选项的黄金参考解释。使用黄金参考解释和检索增强生成(RAG)方法进行的全面多语言实验表明,LLM的性能仍有很大的改进空间,英语的最佳结果约为75分,特别是对于英语以外的语言,其准确率下降了10分。因此,尽管使用了最先

### 大型语言模型作为生成式多语言语音和机器翻译系统的概述 大型语言模型(LLMs)由于其强大的参数规模和预训练机制,能够处理多种自然语言任务。这些模型不仅限于单一语言环境,还展示了出色的跨语言迁移能力[^1]。 #### 跨语言表示学习中的挑战与解决方案 尽管ML LMs表现出显著的零样本跨语言迁移性能,但在实际应用中仍面临一些障碍。研究指出,在多语言嵌入空间里存在着强烈的语言身份特征,这会干扰语义信息的有效传递。为此,Xie等人提出了通过识别并消除低秩子空间来改善这一状况的方法。这种方法可以有效减少语法和其他非语义因素的影响,从而提高跨语言任务的表现[^2]。 #### 应用于生成式多语言语音合成 当涉及到生成式的多语言语音合成功能时,LLM可以通过理解不同语言之间的细微差别以及它们各自的发音规则来进行高质量的声音再现。借助先进的声码器技术,如WaveNet或Tacotron系列架构,结合精心设计的文字转音素映射算法,使得即使是对不常见字符也能实现逼真的发声效果。此外,利用上述提到的技术去除不必要的语言特性可以帮助创建更加通用且适应性强的TTS(Text-to-Speech)系统。 ```python import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53") def transcribe_speech(audio_input): inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)[0] return transcription ``` #### 实现高效的机器翻译服务 对于构建高效可靠的MT(Machine Translation)平台而言,LLM同样扮演着重要角色。通过对大量平行文本数据集的学习,加上适当的微调过程,可以使模型更好地捕捉源目标语言间的转换规律。特别是采用去除了特定语言属性后的向量表征方式后,进一步增强了对未知领域话题的理解力和服务质量稳定性。 ```python from transformers import MarianTokenizer, MarianMTModel tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') model = MarianMTModel.from_pretrained('Helsinki-NLP/opus-mt-en-zh') def translate_text(input_text): batch = tokenizer([input_text], return_tensors='pt', truncation=True, max_length=512) generated_ids = model.generate(**batch) translated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return translated_texts[0] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值