A Survey on Retrieval-Augmented Text Generation for Large Language Models

本文是LLM系列文章,针对《A Survey on Retrieval-Augmented Text Generation for Large Language
Models》的翻译。

摘要

检索增强生成(RAG)将检索方法与深度学习技术相结合,通过动态集成最新的外部信息来解决大型语言模型(LLM)的静态局限性。这种方法主要侧重于文本领域,为LLM生成看似合理但不正确的响应提供了一种经济高效的解决方案,从而通过使用真实世界的数据来提高其输出的准确性和可靠性。随着RAG复杂性的增加,并引入了可能影响其性能的多个概念,本文将RAG范式分为四类:预检索、检索、后检索和生成,从检索的角度提供了详细的视角。它概述了RAG的演变,并通过分析重要研究讨论了该领域的进展。此外,本文还介绍了RAG的评估方法,解决了面临的挑战,并提出了未来的研究方向。通过提供一个有组织的框架和分类,该研究旨在巩固现有的RAG研究,阐明其技术基础,并强调其扩大LLM适应性和应用的潜力。

1 引言

2 RAG框架

3 预检索

4 检索

5 后检索

### 大模型提示词工程与数据标注方法的最佳实践 #### 提示词工程的核心原则 提示词工程是一种通过设计高质量的输入来引导大型语言模型生成期望输出的技术。为了实现这一目标,需要关注以下几个方面: - **语料库的质量控制** 构建良好的语料库不仅依赖于语法正确的文本,还需要对其中的实体、关系以及其他结构化信息进行细致标注[^1]。这种做法能够显著提升模型的理解能力和表达能力。 - **多样化和针对性的设计** 高效的提示应当具备多样性,同时针对具体应用场景定制。例如,在对话系统中,可以通过模拟真实用户的提问方式来提高交互自然度[^4]。 #### 数据集规模的影响分析 当考虑用于训练的数据量时,存在两个极端情况需要注意: - 如果数据集过小,可能导致欠拟合现象发生,即模型难以捕捉到复杂模式; - 而对于极其庞大的数据集合来说,则可能出现过度拟合的风险——尽管在已知样本上的表现优异,但对于未曾见过的新实例却显得乏力。 因此,在实际操作过程中寻找合适的平衡点至关重要。 #### 微调技术的应用价值 除了单纯依靠原始预训练外,还可以采用微调(fine-tuning)手段进一步增强特定领域内的效果。这种方式通过对现有网络权重做出适当修改,使得其更加契合目标任务需求[^2]。不过值得注意的是,由于涉及到了底层架构层面的变化,所以实施起来相对较为复杂且资源消耗较大。 #### Retrieval-Augmented Generation 的引入意义 作为一种新兴范式,《Retrieval-Augmented Generation for Large Language Models: A Survey》探讨了如何将检索机制融入传统生成流程之中,从而有效弥补纯神经网络预测可能存在的不足之处[^3]。此方法特别适用于那些需要高度精确性和上下文关联的任务场景下。 ```python def generate_with_retrieval(prompt, knowledge_base): retrieved_info = retrieve_most_relevant(knowledge_base, prompt) combined_input = f"{prompt} {retrieved_info}" generated_text = model.generate(combined_input) return post_process(generated_text) def retrieve_most_relevant(base, query): # 实现具体的检索逻辑 pass def post_process(text): # 对生成的结果做必要的清理工作 pass ``` 上述代码片段展示了基于检索增强生成的基本框架思路:先从外部知识源获取最贴近当前询问的相关材料作为补充素材;再将其拼接到原初促发串之后送入LLM完成最终创作过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值