本文是LLM系列文章,针对《TransformerFAM: Feedback attention is working memory》的翻译。
摘要
虽然Transformer彻底改变了深度学习,但它们的二次注意力复杂性阻碍了它们处理无限长输入的能力。我们提出了反馈注意力记忆(FAM),这是一种新型的Transformer架构,它利用反馈回路使网络能够处理自己的潜在表示。这种设计促进了Transformer中工作记忆的出现,使其能够处理无限长的序列。TransformerFAM不需要额外的权重,可以与预训练的模型无缝集成。我们的实验表明,TransformerFAM显著提高了Transformer在各种模型大小(1B、8B和24B)的长上下文任务上的性能。这些结果展示了增强大型语言模型(LLM)处理无限长度序列的潜力。
1 引言
2 TransformerFAM
3 实验
4 相关工作
5 结论
在电影《记忆碎片》(2000)中,主角与顺行性失忆症作斗争,这意味着他无法记住过去10分钟内发生的任何事情,但他的