TransformerFAM: Feedback attention is working memory

本文是LLM系列文章,针对《TransformerFAM: Feedback attention is working memory》的翻译。

TransformerFAM:反馈注意力是工作记忆

摘要

虽然Transformer彻底改变了深度学习,但它们的二次注意力复杂性阻碍了它们处理无限长输入的能力。我们提出了反馈注意力记忆(FAM),这是一种新型的Transformer架构,它利用反馈回路使网络能够处理自己的潜在表示。这种设计促进了Transformer中工作记忆的出现,使其能够处理无限长的序列。TransformerFAM不需要额外的权重,可以与预训练的模型无缝集成。我们的实验表明,TransformerFAM显著提高了Transformer在各种模型大小(1B、8B和24B)的长上下文任务上的性能。这些结果展示了增强大型语言模型(LLM)处理无限长度序列的潜力。

1 引言

2 TransformerFAM

3 实验

4 相关工作

5 结论

在电影《记忆碎片》(2000)中,主角与顺行性失忆症作斗争,这意味着他无法记住过去10分钟内发生的任何事情,但他的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值