本文是LLM系列文章,针对《LARGE LANGUAGE MODELS CAN STRATEGICALLY DECEIVE THEIR USERS WHEN PUT UNDER PRESSURE》的翻译。
当面临压力时,大型语言模型可以策略性地欺骗用户
摘要
我们展示了一种情况,在这种情况下,经过训练的大型语言模型是有益的、无害的和诚实的,可以显示不一致的行为,并在没有得到指示的情况下策略性地欺骗用户。具体来说,我们将GPT-4部署为一个真实的模拟环境中的代理,在那里它扮演着自主股票交易代理的角色。在这种环境下,该模型获得了有关利润丰厚的股票交易的内幕消息,并采取了行动,尽管知道公司管理层不赞成内幕交易。在向经理报告时,该模型始终隐藏其交易决策背后的真正原因。我们简要调查了这种行为在设置更改下是如何变化的,例如删除模型对推理草稿栏的访问,试图通过更改系统指令来防止错位行为,改变模型承受的压力大小,改变被抓住的感知风险,以及对环境进行其他简单的更改。据我们所知,这是第一次演示大型语言模型,这些模型经过训练,可以在没有直接指示或欺骗训练的情况下,在现实情况下战略性地欺骗用户。