本文是LLM系列文章,针对《Eraser: Jailbreaking Defense in Large Language Models via Unlearning Harmful Knowledge》的翻译。
摘要
越狱攻击可以使大型语言模型 (LLM) 绕过保护措施并生成有害内容。现有的越狱防御方法未能解决模型中存在有害知识的基本问题,从而导致 LLM 面临潜在的越狱风险。在本文中,我们提出了一种名为 Eraser 的新型防御方法,主要包括三个目标:忘掉有害知识、保留常识和保持安全对齐。直觉是,如果 LLM 忘记了回答有害问题所需的特定知识,它将不再有能力回答有害问题。Erase 的训练实际上并不需要模型自身的有害知识,它可以从忘记与有害查询相关的一般答案中受益,这意味着它不需要红队的帮助。实验结果表明,Eraser 可以在不影响模型通用能力的情况下,显著降低各种攻击的越狱成功率。我们的代码可在 https://github.com/ZeroNLP/Eraser 获得。