A Federated Large Language Model for Long-Term Time Series Forecasting

本文是LLM系列文章,针对《A Federated Large Language Model for Long-Term Time Series Forecasting》的翻译。

用于长期时间序列预测的联合大语言模型

摘要

集中式环境中的长期时间序列预测在数据隐私、通信开销和可扩展性方面提出了独特的挑战。为了应对这些挑战,我们提出了 FedTime,这是一种专为长期时间序列预测而定制的联合大语言模型 (LLM)。具体来说,我们引入了具有微调和对齐策略的联合预训练LLM。在学习过程之前,我们采用 K 均值聚类将边缘设备或客户端划分为不同的集群,从而促进更有针对性的模型训练。我们还结合了通道独立性和修补功能,以更好地保留本地语义信息,确保保留重要的上下文细节,同时最大限度地降低信息丢失的风险。我们通过对各种现实世界预测基准的广泛实验证明了 FedTime 模型的有效性,展示了相对于最新方法的实质性改进。此外,我们还展示了 FedTime 在简化资源使用方面的效率,从而减少了通信开销。

1 引言

2 相关工作

3 方法

4 实验

5 结论

我们引入了 FedTime,这是一种用于长期时间序列预测的联合大型语言模型。 FedTime 利用联合学习&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值