Autonomous Prompt Engineering in Large Language Models

本文是LLM系列文章,针对《Autonomous Prompt Engineering in Large Language Models》的翻译。

摘要

提示工程是一项关键但具有挑战性的任务,用于优化大型语言模型 (LLM) 在自定义任务上的性能。这项开创性研究引入了自动提示工程工具箱 (APET),它使 GPT-41 能够自主应用提示工程技术。通过利用专家提示、思维链和思维树等复杂策略,APET 使 GPT-4 能够动态优化提示,从而在单词排序(增长 4.4%)和几何形状(增长 6.8%)等任务中取得重大改进。尽管在复杂任务中遇到了挑战,例如 Checkmate 合一 (-14.8%),但这些发现证明了 APET 在不使用外部数据的情况下自动化复杂的提示优化流程的变革潜力。总体而言,这项研究代表了 AI 发展的重大飞跃,为自主 AI 系统的未来创新提供了一个强大的框架,并强调了 GPT-4 将提示工程理论付诸实践的能力。它为提高复杂任务性能的性能和拓宽这些技术在实际场景中的实际应用奠定了基础。

1 引言

2 文献综述

3 方法

4 结果

在受限环境中优化自主无人机的群体(flocking)行为是一个典型的应用机器学习和优化算法的挑战。要复现实现这一目标,你可以遵循以下步骤: 1. **环境设置**:首先,你需要建立一个物理或数学模型来表示无人机的运动学、传感器范围、碰撞检测等。MATLAB有 Robotics System Toolbox 可供使用,它包含了许多处理无人机动态的函数。 2. **行为准则**:编写或选择一个 flocking 算法,如 Vicsek 模型或 Boids 算法。在MATLAB中,你可以自定义这些算法,或者找到现成的实现如 `boids.m` 或 `circularFlock.m`。 3. **优化框架**:将 flocking 规则融入到优化过程中,例如使用遗传算法(GA)、粒子群优化(PSO)或整数规划。`Global Optimization Toolbox` 和 `Constraint Optimization Toolbox` 提供了相应的工具。 4. **约束加入**:考虑到环境限制,比如通信范围、高度限制或避免碰撞,将这些约束作为优化函数的一部分,并确保算法在满足这些条件的同时寻找最佳解。 5. **迭代与测试**:进行多次迭代,通过调整参数或优化算法,观察并改善无人机群体的行为效果。使用 `sim` 函数进行实时或离线仿真,观察结果并记录性能指标。 6. **代码实现**:编写清晰的MATLAB脚本或函数,详细注释关键部分,方便其他人理解和复现你的工作。 下面是一个简化的伪代码示例: ```matlab function [optimized_positions] = optimize_flocking(agents, environment_constraints) % 初始化参数和算法 flocking_rule = create_boids_rule(); % 设定优化函数,考虑约束 objective_function = @(positions) -evaluate_flocking_performance(positions, flocking_rule, environment_constraints); % 运行优化算法 optimized_positions = ga(objective_function, agents, options); end % ...其他部分...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值