A User-Centric Benchmark for Evaluating Large Language Models

本文是LLM系列文章,针对《A User-Centric Benchmark for Evaluating Large Language Models》的翻译。

用于评估大型语言模型的以用户为中心的基准

摘要

大型语言模型 (LLM) 是与用户协作完成不同任务的重要工具。评估它们的性能以满足用户在实际场景中的需求非常重要。虽然已经创建了许多基准测试,但它们主要关注特定的预定义模型能力。很少有人介绍真实用户对 LLM 的预期用途。为了解决这一疏忽,我们建议在数据集构建和评估设计中从用户的角度对 LLM 进行基准测试。我们首先从来自 23 个国家/地区的 712 名参与者的用户研究中收集了 1,846 个真实案例和 15 个 LLM。这形成了用户报告场景 (URS) 数据集,其中包含 7 个用户意图的分类。其次,在这个真实的多元文化数据集上,我们对 10 项 LLM 服务在满足用户需求方面的功效进行了基准测试。第三,我们表明我们的基准分数与用户报告的跨不同意图的 LLM 交互体验非常一致,这两者都强调了对主观场景的忽视。总之,我们的研究建议从以用户为中心的角度对 LLM 进行基准测试,旨在促进更好地反映真实用户需求的评估。基准测试数据集和代码可在 https://github.com/Alice1998/URS 获取。

1 引言

<

### 移动摄影中的以用户为中心的AI评估方法 在移动设备上的AI技术应用中,特别是在摄影领域,以用户为中心的评估方法显得尤为重要。这种方法不仅关注算法性能和技术指标,还强调用户体验和实际需求。通过结合定性和定量分析,可以全面理解AI功能的实际效果及其对用户的潜在影响。 #### 用户体验驱动的评估框架 一种常见的以用户为中心的评估框架涉及多个维度,包括功能性、易用性、情感反应以及社会文化因素[^1]。对于移动摄影中的AI功能而言,这可能意味着: - **图像质量感知**:虽然传统的图像处理可以通过客观标准(如PSNR或SSIM)来衡量,但在AI增强的照片中,主观评价往往更为重要。因此,采用用户调查问卷或者偏好测试能够更好地反映真实感受。 - **操作便捷度**:考虑到不同年龄段和技术背景的人群,界面设计应直观简洁,同时提供足够的自定义选项满足高级摄影师的需求[^2]。 - **隐私与安全性考量**:随着数据保护意识提升,任何基于云服务或是本地化机器学习模型都需要透明告知其工作原理,并允许用户控制个人信息共享程度[^3]。 #### 实验室环境下的可控实验 vs 自然场景实地考察 为了获取更可靠的数据支持决策制定过程,在实验室条件下执行严格受控的任务可能是必要的;然而,仅依赖于此类设置可能会忽略掉日常生活中遇到的各种复杂情况。于是乎,补充性的田野研究就变得不可或缺——它能捕捉到那些无法重现于人工环境中却极其重要的细节之处[^4]。 ```python def evaluate_user_experience(image_quality, usability_score, privacy_concerns): """ A simple function to demonstrate combining multiple evaluation metrics. Parameters: image_quality (float): Subjective score of photo quality from user feedback. usability_score (int): Rating out of 5 indicating ease-of-use satisfaction levels. privacy_concerns (bool): Indicator whether users feel secure using the app. Returns: str: Overall assessment based on combined factors. """ if all([image_quality >= 4.0, usability_score >= 4, not privacy_concerns]): return "Highly Recommended" elif any([image_quality < 3.0, usability_score <= 2, privacy_concerns]): return "Not Recommended" else: return "Recommended with Caution" # Example Usage print(evaluate_user_experience(4.5, 5, False)) # Output: Highly Recommended ``` 上述代码片段展示了一个简化版的方法论实现方式,用于综合考虑几个关键方面得出最终建议结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值