本文是LLM系列文章,针对《Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models》的翻译。
评估自生成文档以增强大型语言模型的检索增强生成
摘要
在检索增强生成系统中,自生成文档 (SGD) 与检索内容的集成已成为提高大型语言模型性能的一种有前途的策略。然而,以前的研究主要集中在优化 SGD 的使用上,而 SGD 的固有特性仍未得到充分探索。因此,本文对不同类型的 SGD 进行了全面分析,并对各种知识密集型任务进行了实验。我们开发了基于系统功能语言学 (SFL) 的 SGD 分类法,以比较不同 SGD 类别的影响。我们的研究结果为哪些类型的 SGD 最有效地有助于提高 LLM 的性能提供了关键见解。结果和基于 SGD 类别的进一步融合方法也为更好地利用 SGD 通过 RAG 实现知识驱动的 QA 任务的重大进步提供了实用指南。