Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language

本文是LLM系列文章,针对《Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models》的翻译。

摘要

在检索增强生成系统中,自生成文档 (SGD) 与检索内容的集成已成为提高大型语言模型性能的一种有前途的策略。然而,以前的研究主要集中在优化 SGD 的使用上,而 SGD 的固有特性仍未得到充分探索。因此,本文对不同类型的 SGD 进行了全面分析,并对各种知识密集型任务进行了实验。我们开发了基于系统功能语言学 (SFL) 的 SGD 分类法,以比较不同 SGD 类别的影响。我们的研究结果为哪些类型的 SGD 最有效地有助于提高 LLM 的性能提供了关键见解。结果和基于 SGD 类别的进一步融合方法也为更好地利用 SGD 通过 RAG 实现知识驱动的 QA 任务的重大进步提供了实用指南。

1 引言

2 系统功能语言学理论

3 自生成文档的分类

4 实验设置

5 自生成文档的影响

6 探索 SGD 类型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值