本文是LLM系列文章,针对《Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models》的翻译。
摘要
对齐,赋予预训练的大型语言模型(LLM)遵循指令的能力,对其现实世界的应用至关重要。传统的监督微调(SFT)方法将其形式化为因果语言建模,通常具有交叉熵目标,需要大量高质量的指令-响应对。然而,由于在实践中创建和维护成本高、劳动密集,广泛使用的SFT数据集的质量无法得到保证。为了克服与SFT数据集质量相关的局限性,我们引入了一种新的面向偏好的监督微调方法,即PoFT。直觉是通过施加特定的偏好来提高SFT:在相同的SFT数据上,更喜欢目标模型而不是对齐的LLM。这种偏好鼓励目标模型预测比对齐LLM预测的可能性更高的可能性,将数据质量的评估信息(即对齐LLM的预测可能性)纳入训练过程。进行了广泛的实验,结果验证了所提出方法的有效性。PoFT在不同的训练数据集和基础模型上实现了比SFT基线稳定和一致的改进。此外,我们证明PoFT可以与现有的SFT数据过滤方法集成以实现更好的性能,并通过遵循偏好优化过程(如DPO)进一步改进。