Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models

本文是LLM系列文章,针对《Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models》的翻译。

面向偏好的监督微调:偏爱目标模型而非对齐的大型语言模型

摘要

对齐,赋予预训练的大型语言模型(LLM)遵循指令的能力,对其现实世界的应用至关重要。传统的监督微调(SFT)方法将其形式化为因果语言建模,通常具有交叉熵目标,需要大量高质量的指令-响应对。然而,由于在实践中创建和维护成本高、劳动密集,广泛使用的SFT数据集的质量无法得到保证。为了克服与SFT数据集质量相关的局限性,我们引入了一种新的面向偏好的监督微调方法,即PoFT。直觉是通过施加特定的偏好来提高SFT:在相同的SFT数据上,更喜欢目标模型而不是对齐的LLM。这种偏好鼓励目标模型预测比对齐LLM预测的可能性更高的可能性,将数据质量的评估信息(即对齐LLM的预测可能性)纳入训练过程。进行了广泛的实验,结果验证了所提出方法的有效性。PoFT在不同的训练数据集和基础模型上实现了比SFT基线稳定和一致的改进。此外,我们证明PoFT可以与现有的SFT数据过滤方法集成以实现更好的性能,并通过遵循偏好优化过程(如DPO)进一步改进。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值