GuardReasoner: Towards Reasoning-based LLM Safeguards

本文是LLM系列文章,针对《GuardReasoner: Towards Reasoning-based LLM Safeguards》的翻译。

GuardReasoner:迈向基于推理的LLM保障

摘要

随着LLM对安全关键应用的影响越来越大,使用护栏确保其安全仍然是一个关键挑战。本文通过引导保护模型学习推理,提出了一种新的LLM保护机制GuardReasoner。具体来说,我们首先创建GuardReasonerTrain数据集,该数据集由127K个样本和460K个详细的推理步骤组成。然后,我们引入推理SFT来解锁保护模型的推理能力。此外,我们还提出了硬样本DPO,以进一步加强他们的推理能力。通过这种方式,GuardReasoner实现了更好的性能、可解释性和通用性。对3个护栏任务的13个基准点进行了广泛的实验和分析,证明了其优越性。值得注意的是,GuardReasoner 8B的F1成绩平均比GPT-4o+CoT高出5.74%,LLaMA Guard 3 8B高出20.84%。我们发布了GuardReasoner不同尺度(1B、3B、8B)的训练数据、代码和模型。

1 引言

2 相关工作

3 GuardReasoner

4 实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值