摘要
大语言模型(LLMs)已成为现代自然语言处理的支柱,但它存在泄露敏感训练数据的隐私问题。成员推理攻击(MIAs)旨在推断某个样本是否包含在模型的训练数据集中,可能引发更广泛的隐私威胁。现有的针对传统分类模型的防御方法没有考虑文本数据的序列特性,因此,它们要么需要大量的计算资源,要么无法有效降低大语言模型中的隐私风险。在这项研究中,我们提出了一种轻量级且有效的经验隐私防御方法,通过利用大语言模型中token的特定特征来保护语言模型的训练数据。通过分析训练过程中token的动态变化,我们提出了一种token选择策略,将token分为用于学习的 “难学习token” 和用于 “反学习” 的 “记忆token”。随后,我们在训练阶段通过优化一种新的双目标token级损失函数,以实现模型实用性和隐私性之间的帕累托最优平衡。大量实验表明,与基线方法相比,我们的方法不仅能有效抵御成员推理攻击,还能在各种大语言模型架构和数据集上使语言建模性能提高约10%。
引言
大语言模型(LLMs)已成为现代自然语言处理的基础,在各个领域都有广泛应用(Chang等人,2024)。随着大语言模型的快速部署,数据隐私问题也日益严重(Yao等人,2024)。研究表明,大语言模型会记住训