Large Language Models Pass the Turing Test

文章总结

主要内容
  1. 研究目的:通过随机对照的三方图灵测试,验证当代大型语言模型(LLMs)能否与人类区分。
  2. 实验设计
    • 参与者:126名UCSD本科生和158名Prolific平台用户。
    • 模型:ELIZA(规则型)、GPT-4o、LLaMA-3.1-405B、GPT-4.5。
    • 提示策略:分为无角色(NO-PERSONA)和拟人化角色(PERSONA)两种提示。
    • 测试流程:每个参与者作为审讯者进行8轮对话,每轮同时与人类和AI交互,判断谁是人类。
  3. 主要发现
    • GPT-4.5-PERSONA:73%的胜率(显著高于人类被选中的概率)。
    • LLaMA-3.1-PERSONA:56%的胜率(与人类无显著差异)。
    • 基准模型(ELIZA和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值