主要内容
- 研究背景:大语言模型(LLMs)在2D图像领域取得成功后,其在3D场景理解中的应用成为新趋势。但3D场景理解面临3D文本数据稀缺、现有方法忽视自我中心视角等问题。
- 相关工作:介绍室内3D场景理解、3D领域的大语言模型以及3D空间情境感知方面的研究现状,指出当前方法的局限性。
- 方法
- 情境数据集:利用RGB - D视频中的自然探索行为,通过视觉语言模型(VLMs)生成描述和问答对,并进行数据集验证和优化,最终生成大规模高质量的情境数据集View2Cap。
- 模型架构:模型包含点云编码器、连接器、大语言模型和情境定位模块。情境定位模块将姿态估计转换为分类问题,简化学习过程。
- 训练:训练过程分三个阶段,包括区域文本对齐、情境定位和指令微调,使用LoRA对LLM进行微调。
- 实验:在3D场景理解、情境定位、情