Empowering Large Language Models with 3D Situation Awareness

在这里插入图片描述

主要内容

  1. 研究背景:大语言模型(LLMs)在2D图像领域取得成功后,其在3D场景理解中的应用成为新趋势。但3D场景理解面临3D文本数据稀缺、现有方法忽视自我中心视角等问题。
  2. 相关工作:介绍室内3D场景理解、3D领域的大语言模型以及3D空间情境感知方面的研究现状,指出当前方法的局限性。
  3. 方法
    • 情境数据集:利用RGB - D视频中的自然探索行为,通过视觉语言模型(VLMs)生成描述和问答对,并进行数据集验证和优化,最终生成大规模高质量的情境数据集View2Cap。
    • 模型架构:模型包含点云编码器、连接器、大语言模型和情境定位模块。情境定位模块将姿态估计转换为分类问题,简化学习过程。
    • 训练:训练过程分三个阶段,包括区域文本对齐、情境定位和指令微调,使用LoRA对LLM进行微调。
  4. 实验:在3D场景理解、情境定位、情
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值