主要内容
- 背景与动机:大语言模型(LLMs)应用广泛但存在知识过时和幻觉问题,检索增强生成(RAG)结合外部检索系统可解决这些问题,但现有针对RAG - 基于LLMs的攻击方法存在效率低、易被检测、缺乏理论框架等问题。本文提出协调Prompt - RAG攻击(PR - attack),通过在知识库注入少量中毒文本并在提示中嵌入后门触发器,实现更有效和隐蔽的攻击。
- 相关工作:介绍LLMs的安全攻击分类,包括提示攻击和对抗攻击,以及双层优化在机器学习领域的应用。
- 方法:定义威胁模型,将PR - attack问题表述为双层优化问题,并通过修改模型克服优化挑战。提出交替优化方法,分别优化中毒文本和软提示,并对方法进行复杂度分析。
- 实验:使用三个问答数据集和六个LLMs评估PR - attack,与现有攻击方法对比。结果表明PR - attack攻击成功率高、隐蔽性好、适用性广,且对中毒文本和软提示的参数选择不敏感。