PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models

在这里插入图片描述

主要内容

  1. 背景与动机:大语言模型(LLMs)应用广泛但存在知识过时和幻觉问题,检索增强生成(RAG)结合外部检索系统可解决这些问题,但现有针对RAG - 基于LLMs的攻击方法存在效率低、易被检测、缺乏理论框架等问题。本文提出协调Prompt - RAG攻击(PR - attack),通过在知识库注入少量中毒文本并在提示中嵌入后门触发器,实现更有效和隐蔽的攻击。
  2. 相关工作:介绍LLMs的安全攻击分类,包括提示攻击和对抗攻击,以及双层优化在机器学习领域的应用。
  3. 方法:定义威胁模型,将PR - attack问题表述为双层优化问题,并通过修改模型克服优化挑战。提出交替优化方法,分别优化中毒文本和软提示,并对方法进行复杂度分析。
  4. 实验:使用三个问答数据集和六个LLMs评估PR - attack,与现有攻击方法对比。结果表明PR - attack攻击成功率高、隐蔽性好、适用性广,且对中毒文本和软提示的参数选择不敏感。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值