<think>我们正在讨论SFT(监督微调)的实现方法。根据用户要求,我们需要提供SFT微调的伪代码或实现步骤。结合之前的引用,虽然引用中提到了PEFT(参数高效微调)和TTRL(测试时强化学习),但用户明确要求了解SFT微调。SFT(SupervisedFine-Tuning)是微调预训练模型的一种基本方法,使用有标签的数据以监督学习的方式调整模型参数。下面将分步骤描述SFT微调的流程,并给出伪代码。###SFT微调步骤1.**准备数据集**:需要准备一个监督数据集,包含输入和对应的期望输出(标签)。例如,对于文本生成任务,输入是一段文本,输出是目标文本。2.**加载预训练模型**:从预训练模型(如BERT、GPT等)初始化模型权重。3.**定义微调任务**:根据任务类型(如分类、生成等)在预训练模型基础上添加任务特定的层(如分类头),或者直接使用预训练模型的结构。4.**设置训练参数**:选择优化器、学习率、批大小等超参数。5.**训练循环**:在训练数据上迭代,计算损失并更新模型参数。6.**评估与保存**:在验证集上评估模型性能,保存最佳模型。###SFT微调伪代码以下是一个通用的SFT微调伪代码示例,以文本分类任务为例:```plaintext//步骤1:准备数据集LOADdatasetFROM"data_path"SPLITdatasetINTOtrain_set,val_set//步骤2:加载预训练模型model←LOAD_PRETRAINED_MODEL("bert-base-uncased")ADDclassification_headONmodel//添加分类层//步骤3:设置训练参数optimizer←AdamW(model.parameters(),lr=5e-5)loss_fn←CrossEntropyLoss()epochs←3batch_size←32//步骤4:训练循环FORepochIN1..epochsDOFOREACHbatchINtrain_set(WITHbatch_size)DO//前向传播inputs,labels←batchoutputs←model(inputs)//[batch_size,num_classes]//计算损失loss←loss_fn(outputs,labels)//反向传播optimizer.zero_grad()loss.backward()optimizer.step()ENDFOR//验证集评估val_loss,val_acc←EVALUATE(model,val_set,loss_fn)PRINT"Epoch",epoch,"ValLoss:",val_loss,"ValAcc:",val_accENDFOR//步骤5:保存模型SAVEmodelTO"sft_model.bin"```###关键点说明-**数据集格式**:对于不同任务,输入和标签的形式不同。在文本分类中,输入是文本序列,标签是类别索引;在生成任务中,输入是源文本,标签是目标文本。-**模型调整**:对于分类任务,通常在预训练模型顶部添加一个线性层作为分类头。对于生成任务(如使用GPT),则直接使用预训练的语言模型结构,在微调时调整整个模型的参数。-**损失函数**:分类任务常用交叉熵损失;生成任务常用交叉熵损失(对每个token计算)[^2]。-**学习率**:通常使用较小的学习率(如5e-5)以避免破坏预训练模型学到的知识。###SFT与提示微调(Prompt-Tuning)的区别用户引用[1]提到Prompt-Tuning使用softprompt,而SFT微调会更新整个模型或大部分参数。两者的主要区别在于:-**SFT**:更新模型的所有参数(或添加任务特定层并更新这些层)。-**Prompt-Tuning**:固定预训练模型参数,只优化少量可学习的提示向量(softprompt)[^1]。###数学表示在微调过程中,模型参数更新公式如下:$$\theta_{t}=\theta_{t-1}-\eta\nabla_{\theta}\mathcal{L}(f_{\theta}(x),y)$$其中:-$\theta$是模型参数-$\eta$是学习率-$\mathcal{L}$是损失函数-$(x,y)$是训练样本###相关问题§§相关问题§§1.SFT微调需要多少数据才能达到较好效果?2.如何避免SFT微调中的过拟合问题?3.SFT与参数高效微调(PEFT)方法(如LoRA)有何区别?4.在生成任务(如对话系统)中如何实现SFT微调?以上内容提供了SFT微调的基本步骤和伪代码,并强调了其与提示微调的区别。用户可以根据具体任务调整实现细节。</think>### SFT(监督微调)伪代码与实现步骤
#### 一、SFT核心流程
```plaintext
FUNCTION supervised_fine_tuning(pretrained_model, dataset):
// 步骤1:准备监督数据集[^3]
sft_dataset ← LOAD_DATASET(dataset) // 格式: [input, target_output]
// 步骤2:初始化模型
model ← LOAD_PRETRAINED(pretrained_model) // 如LLaMA, GPT
tokenizer ← GET_TOKENIZER(pretrained_model)
// 步骤3:配置训练参数
optimizer ← AdamW(lr=2e-5, weight_decay=0.01)
loss_fn ← CrossEntropyLoss()
// 步骤4:微调循环
FOR epoch IN 1..num_epochs:
FOR batch IN sft_dataset:
// 编码输入输出
inputs ← tokenizer(batch.input)
labels ← tokenizer(batch.target_output)
// 前向传播
outputs ← model(**inputs)
loss ← loss_fn(outputs.logits, labels)
// 反向传播
loss.backward()
optimizer.step()
optimizer.zero_grad()
// 验证集评估
eval_loss ← EVALUATE(model, validation_set)
SAVE_CHECKPOINT(model, f"epoch_{epoch}")
// 步骤5:保存最终模型
RETURN model.save("sft_final_model")
END FUNCTION
```
#### 二、关键实现细节
1. **数据格式要求**
```python
# 示例数据样本
{
"input": "解释牛顿第一定律",
"target_output": "牛顿第一定律指出:物体在不受外力作用时..."
}
```
2. **损失函数设计**
$$ \mathcal{L}_{SFT} = -\sum_{t=1}^{T} \log P(y_t | y_{<t}, x; \theta) $$
仅计算**目标序列**的交叉熵损失[^2]
3. **梯度更新策略**
```plaintext
// 只微调特定层(高效训练)
FOR param IN model.parameters():
param.requires_grad ← False // 冻结所有层
UNFREEZE(model.decoder.layers[-4:]) // 仅解冻最后4层
```
#### 三、数学原理
监督微调通过最大化目标序列的似然概率调整参数:
$$ \theta^* = \arg\max_{\theta} \sum_{(x,y) \in \mathcal{D}} \log P(y|x; \theta) $$
其中:
- $x$ 是输入序列
- $y$ 是目标序列
- $\mathcal{D}$ 是监督数据集
#### 四、完整PyTorch实现示例
```python
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments
# 加载预训练模型
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b")
# 配置训练参数
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=4,
num_train_epochs=3,
learning_rate=2e-5,
fp16=True # 混合精度训练
)
# 实现数据整理器
def collate_fn(batch):
return {
"input_ids": pad_sequence([item["input_ids"] for item in batch]),
"labels": pad_sequence([item["labels"] for item in batch])
}
# 启动训练
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=collate_fn
)
trainer.train()
```
#### 五、最佳实践
1. **数据质量优化**
```plaintext
// 清洗数据
REMOVE_LOW_QUALITY_SAMPLES(dataset) // 过滤错误标注
BALANCE_DOMAIN_DISTRIBUTION(dataset) // 平衡领域分布
```
2. **渐进式解冻**
```plaintext
// 分阶段解冻层
FOR epoch IN 1..3:
UNFREEZE(model.layers[-epoch])
```
3. **早停策略**
```plaintext
IF eval_loss NOT DECREASE FOR 3 epochs:
STOP_TRAINING()
```
> SFT微调使预训练模型**适应特定任务分布**,相比Prompt-Tuning[^1]能更充分挖掘模型潜力,尤其适合需要精确控制的专业领域任务[^3]。
---