文章主要内容总结
本文聚焦于运用基于大语言模型(LLM)的交互式小说(IF)框架,来推动视角采择并减少对“脏活”(Dirty Work)的社会污名。研究选取了四类“脏活”职业,分别是清洁工、消防员、警察和护理员,通过实验和访谈,深入探究了该框架在降低职业偏见方面的实际效果、作用机制以及面临的挑战。
核心研究发现
- 定量研究结果:在对100名参与者开展的实验中,数据表明,参与者在体验过基于LLM的交互式小说后,对相关职业的理解程度显著提升,共情水平也有所提高,并且与从事“脏活”的工作者之间的社会距离明显缩短。
- 定性研究结果:通过对15名参与者进行访谈发现,这种交互式小说能够增强参与者的沉浸感,加深他们的情感共鸣,让参与者切实体会到这些职业的价值。不过,访谈也指出了存在的问题,例如大语言模型生成的情境细节不够丰富,甚至可能会无意中强化现有的刻板印象。
- 挑战与局限:当前存在的主要挑战包括大语言模型生成内容的深度不足、可能会无意中强化职业刻板印象,以及单纯的文本交互在用户参与度方面存在一定的局限性。