Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?

摘要

带可验证奖励的强化学习(RLVR)最近在提升大语言模型(LLMs)的推理性能方面取得了显著成功,尤其是在数学和编程任务中。人们普遍认为,与传统强化学习帮助智能体探索和学习新策略类似,RLVR使LLMs能够持续自我改进,从而获得超越相应基础模型能力的新型推理能力。在本研究中,我们通过使用大k值的pass@k作为评估指标,系统地探究了RLVR训练的LLMs在各种模型家族、RL算法以及数学/编码/视觉推理基准上的推理能力边界,对当前RLVR的现状进行了批判性审视。尽管RLVR提高了正确路径的采样效率,但我们惊讶地发现,当前的训练并没有引出根本上新的推理模式。我们观察到,虽然RLVR训练的模型在较小的k值(例如,k=1)时表现优于其基础模型,但当k较大时,基础模型的pass@k分数更高。此外,我们还观察到,随着RLVR训练的进行,LLMs的推理能力边界往往会缩小。进一步的覆盖范围和困惑度分析表明,RLVR模型生成的推理路径已经包含在基础模型的采样分布中,这表明它们的推理能力源于基础模型并受其限制。从这个角度来看,将基础模型视为上限,我们的定量分析表明,六种流行的RLVR算法表现相似,且在充分利用基础模型的潜力方面远未达到最佳状态。相比之下,我们发现蒸馏可以从教师模型引入新的推理模式,并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值