PhySense: Principle-Based Physics Reasoning Benchmarking for Large Language Models

文章主要内容

本文聚焦于大型语言模型(LLMs)在物理问题中基于原理的推理能力,指出当前LLMs在解决物理问题时,常采用冗长、复杂的推理路径,难以像人类专家那样运用核心物理原理(如对称性、守恒定律、量纲分析等)进行简洁、高效且可解释的推理。为此,作者提出了PhySense——首个基于物理原理的推理基准,包含380个精心设计的物理问题,这些问题利用核心原理可轻松解决,但对未采用“原理优先”推理的LLMs颇具挑战性。

通过零样本、提示和无计算提示三种策略,对7个先进LLMs进行评估,发现:

  1. 推理准确性:即便在提示下,LLMs整体准确率仍较低,尤其在对称性等原理的应用上存在显著不足。
  2. 推理效率:LLMs消耗的token量远超人类专家(推理模型约为人类的100倍),凸显其在原理驱动的高效推理上的巨大差距。
  3. 提示效果:提示和无计算指令仅带来边际改进,表明LLMs需深度整合原理性推理。

创新点

  1. 首个基于原理的物理推理基准:PhySense专注于测试LLMs对核心物理原理的理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值