Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning

论文主要内容总结

研究背景与目的

大型语言模型(LLMs)在自然语言处理任务中表现出色,但存在事实性错误和知识更新困难等问题。检索增强生成(RAG)通过外部知识检索缓解这些问题,而结合知识图谱(KGs)的GraphRAG进一步支持多步推理和结构化知识访问。然而,此类系统的超参数优化(如分块大小、检索策略、提示模板等)尚未被系统研究。本文利用Cognee框架,在多跳问答基准上优化KG与LLM接口的超参数,探索性能提升的可能性及评估指标的局限性。

方法与实验设计
  1. 框架与参数:使用Cognee模块化框架,优化分块大小、检索类型(文本块或图三元组)、Top-k值、QA与图构建提示模板、任务处理方法等6个核心参数。
  2. 基准与指标:在HotPotQA、TwoWikiMultiHop、MuSiQue三个多跳QA基准上测试,采用Exact Match(EM)、F1分数及DeepEval的LLM-based正确性指标评估。
  3. 优化算法:使用Tree-structured Parzen Estimator(TPE)算法搜索参数空间,每个实验包含
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值