论文主要内容总结
研究背景与目的
大型语言模型(LLMs)在自然语言处理任务中表现出色,但存在事实性错误和知识更新困难等问题。检索增强生成(RAG)通过外部知识检索缓解这些问题,而结合知识图谱(KGs)的GraphRAG进一步支持多步推理和结构化知识访问。然而,此类系统的超参数优化(如分块大小、检索策略、提示模板等)尚未被系统研究。本文利用Cognee框架,在多跳问答基准上优化KG与LLM接口的超参数,探索性能提升的可能性及评估指标的局限性。
方法与实验设计
- 框架与参数:使用Cognee模块化框架,优化分块大小、检索类型(文本块或图三元组)、Top-k值、QA与图构建提示模板、任务处理方法等6个核心参数。
- 基准与指标:在HotPotQA、TwoWikiMultiHop、MuSiQue三个多跳QA基准上测试,采用Exact Match(EM)、F1分数及DeepEval的LLM-based正确性指标评估。
- 优化算法:使用Tree-structured Parzen Estimator(TPE)算法搜索参数空间,每个实验包含