Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision

在这里插入图片描述

文章主要内容总结

  1. 研究背景与目的:现有LLM评估基准多聚焦于最终推理结果,忽视了模型在规划、修订及资源约束下的决策等内部推理过程。而理解这些过程对提升模型在真实场景中的可靠性至关重要。
  2. 方法与框架
    • 提出AdvGameBench框架,将LLM嵌入资源受限的战略游戏(塔防、自动战斗、回合制战斗)中,通过封闭、规则明确的环境观察模型的多步推理行为。
    • 定义三大核心评估维度:规划能力、修订能力、资源约束决策能力,并引入一系列过程指标,如过度修正风险率(ORR)、修正成功率(CSR)、改进斜率(β)、超预算率(OBR)等。
  3. 实验结果
    • 对12个先进LLM进行4320轮对抗测试,ChatGPT-o3-mini表现最佳,综合得分最高(胜率74.7%,修正成功率78.6%,改进斜率+0.041)。
    • 发现过度修正风险率与修正成功率呈负相
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值