Benchmarking Multimodal LLMs on Recognition and Understanding over Chemical Tables

文章主要内容总结

  1. 研究背景与目标:化学表格包含符号表达、结构化变量和分子图形等多模态信息,现有基准未充分关注此类复杂性,限制了多模态大语言模型(MLLMs)在化学科学理解中的应用。为此,研究团队构建了ChemTable基准,旨在评估MLLMs在化学表格识别与理解任务上的表现。
  2. ChemTable数据集特点
    • 数据规模:从化学文献实验部分筛选超1300个真实表格,覆盖反应条件优化、底物筛选等6种类型。
    • 注释细节:包含单元格多边形、逻辑布局、领域标签(试剂、产率等)及分子图形注释。
    • 任务设计
      • 表格识别:结构解析与内容提取,如值检索、位置检索、分子识别(SMILES字符串提取)。
      • 表格理解:超9000个问答实例,分为描述性问题(事实提取)和推理问题(对比、归因等)。
  3. 实验结果与发现
    • 模型表现:闭
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值