Unleashing Embodied Task Planning Ability in LLMs via Reinforcement Learning

在这里插入图片描述

文章主要内容总结

本文针对大型语言模型(LLMs)在具身任务规划中存在的不足,提出了一种基于强化学习的框架Embodied Planner-R1,旨在通过自主探索提升LLMs的交互式规划能力。

现有方法依赖静态知识生成开环动作脚本,难以学习动作与环境反馈的因果关系,尤其在部分可观测环境中表现不佳。Embodied Planner-R1通过三个核心创新解决这些问题:

  1. 群体滚动(Group Rollout):无需人类标注,通过并行探索实现环境内交互,高效积累多样化的交互轨迹;
  2. 完成驱动的稀疏奖励:仅基于任务是否完成给予奖励(完成得1分,未完成得0分),避免奖励欺骗,鼓励自主探索;
  3. 交互式策略优化(IPO):针对多轮ReAct式轨迹设计,通过群体归一化优势估计和KL散度正则化,高效利用群体轨迹进行策略更新,解决长序列训练中的概率退化问题。

实验在两个文本型具身规划基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值