文章主要内容总结
本文聚焦多模态大型语言模型(MLLMs)的可解释性问题,提出了一种名为令牌激活图(Token Activation Map, TAM) 的新方法。与传统视觉模型(如CNN、ViT)仅生成单一输出不同,MLLMs会逐步生成多个令牌(tokens),且每个令牌的生成依赖于前文上下文,这导致上下文令牌会对后续令牌的解释产生冗余激活干扰,而现有方法往往忽略这一问题。
为解决该问题,TAM引入了估计因果推理方法,以减轻上下文干扰,同时提出秩高斯滤波器减少激活噪声。实验表明,TAM在多个数据集(如COCO Caption、OpenPSG)上显著优于现有最先进方法,且能应用于目标定位、故障案例分析、视频可视化、MLLMs视觉对比、模型理解(如颜色、形状、动作等属性)等多种场景。代码已开源(github.com/xmed-lab/TAM)。
创新点
- 提出TAM方法