Boosting LLM’s Molecular Structure Elucidation with Knowledge Enhanced Tree Search Reasoning

在这里插入图片描述

文章主要内容总结

本文针对大型语言模型(LLMs)在分子结构解析任务中存在的化学知识不足、推理评估能力弱等问题,提出了一种知识增强的推理框架K-MSE(Knowledge-enhanced reasoning framework for Molecular Structure Elucidation)。该框架以蒙特卡洛树搜索(MCTS)为基础,可作为插件与任意LLM结合,显著提升分子结构解析性能。

具体而言,研究的核心问题是LLMs在处理核磁共振(NMR)、红外(IR)等光谱数据推断分子结构时,存在两大局限:一是对化学分子结构空间的覆盖不全面(如难以准确识别噻吩等特殊亚结构);二是无法准确评估和修正自身推理过程,影响树搜索等复杂推理的效率。

为解决这些问题,K-MSE从三方面入手:

  1. 构建分子亚结构知识库:整合常见分子亚结构(如环结构、链结构)及其文本描述,补充LLMs的化学知识覆盖;
  2. 设计专门的分子-光谱评分器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值