一、文章主要内容总结
本文提出了Perspective-Dial,一种用于量化、测量和控制文本(尤其是大型语言模型(LLMs)生成文本)视角的框架,旨在解决LLM输出中偏见和视角的可量化理解与控制问题。其核心内容包括:
-
核心组件
- 视角空间(Perspective Space):基于语言模型的嵌入空间,通过对比学习(采用BERT-based孪生网络架构)构建的度量空间,可对特定主题的不同视角进行定量测量。
- 系统性提示工程(Systematic Prompt Engineering):利用贪婪坐标下降算法,基于视角空间的测量反馈优化用户提示,将LLM输出视角引导至用户指定的方向。
-
方法与实验
- 采用实证方法,通过对比学习训练视角空间:将具有相似视角的文本标记为“相似(1)”,不同视角的标记为“不相似(0)”,使用余弦相似度损失或对比损失优化模型。
- 实验案例:以“足球(支持皇马/巴萨/中立)”和