MOTIVE BENCH: How Far Are We From Human-Like Motivational Reasoning in Large Language Models?

在这里插入图片描述

文章主要内容总结

本文提出了一个名为MOTIVEBENCH的基准测试,旨在评估大型语言模型(LLMs)的类人动机推理能力。该基准包含200个丰富的情境场景和600个推理任务,覆盖多个动机层次(基于马斯洛需求层次理论和Reiss的16种基本欲望理论)。通过对7个主流模型家族的29个LLM进行测试,研究发现:

  1. 即使最先进的模型(如GPT-4o)在类人动机推理上仍有差距(准确率80.89%);
  2. LLMs在“爱与归属感”等情感相关动机推理上表现较差;
  3. LLMs存在过度理性、理想化等问题,与人类推理模式存在显著差异;
  4. 模型规模与动机推理能力正相关,但思维链(CoT)提示对提升性能无效,甚至可能降低表现。

创新点

  1. 首个聚焦动机推理的综合基准:不同于现有基准(如SocialIQA)场景简单、信息明确的局限,MOTIVEBENCH提供丰富的角色档案和真实场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值