文章主要内容总结
本文提出了一个名为MOTIVEBENCH的基准测试,旨在评估大型语言模型(LLMs)的类人动机推理能力。该基准包含200个丰富的情境场景和600个推理任务,覆盖多个动机层次(基于马斯洛需求层次理论和Reiss的16种基本欲望理论)。通过对7个主流模型家族的29个LLM进行测试,研究发现:
- 即使最先进的模型(如GPT-4o)在类人动机推理上仍有差距(准确率80.89%);
- LLMs在“爱与归属感”等情感相关动机推理上表现较差;
- LLMs存在过度理性、理想化等问题,与人类推理模式存在显著差异;
- 模型规模与动机推理能力正相关,但思维链(CoT)提示对提升性能无效,甚至可能降低表现。
创新点
- 首个聚焦动机推理的综合基准:不同于现有基准(如SocialIQA)场景简单、信息明确的局限,MOTIVEBENCH提供丰富的角色档案和真实场景