文章主要内容总结
本文介绍了CFBenchmark-MM——一个面向多模态大语言模型(MLLMs)的中文金融基准。该基准包含超过9,000个图像-问题对,涵盖表格、柱状图、折线图、饼图和结构图等多种图表类型,旨在评估MLLMs处理金融领域多模态信息的能力。
论文的核心工作包括:
- 基准构建:通过三步标注流程(从金融研究报告收集图表及分析、利用GPT-4生成问题和答案、人工验证)构建了包含5类任务(算术推理、统计推理、结构推理、金融解释、金融知识)的数据集。
- 分阶段评估系统:设计了四组评估设置(仅问题、问题+图像、问题+图表文本描述、问题+图像+图表文本描述),逐步测试MLLMs整合多模态信息的能力。
- 实验与分析:在13个主流MLLMs上的实验显示,尽管模型具备基础金融知识,但处理多模态金融信息的效率和稳健性有限(如GPT-4V的客观题准确率仅52%,主观题得分38%)。主要问题包括视觉内容误读和金融概念理解不足,凸显了MLLMs在金融领域优化的必要性。
创新点
- 首个全面的中文多模态金融基准