Challenges & Opportunities with LLM-Assisted Visualization Retargeting

文章主要内容和创新点

主要内容

本文聚焦于可视化重定向(Visualization Retargeting)——即把现有图表适配到新数据集的过程,探讨了大型语言模型(LLMs)在这一过程中的辅助作用及局限性。

研究首先定义了可视化重定向的核心挑战,从语法(代码依赖与修改)、语义(数据映射与尺度适配)、语用(视觉传达与受众适配)三个层面进行了表征。随后,作者评估了两种LLM辅助方法的性能:

  1. 基线方法:直接指令LLM生成并适配代码(将代码视为文本输入);
  2. 程序合成管道:LLM基于示例代码和数据的属性提供结构化信息(如视觉编码),引导代码构建。

评估结果显示,两种方法在新数据未充分转换时均表现不佳,且程序合成管道因错误传播性能略逊于基线方法。最后,文章提出了未来重定向系统的设计建议,包括混合主动辅助、数据依赖可视化、整合转换支持等。

创新点
  1. 挑战表征:首次从语法、语义、语用三个维度系统定义了可视化重定向的挑战,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值