文章主要内容和创新点
主要内容
本文聚焦于可视化重定向(Visualization Retargeting)——即把现有图表适配到新数据集的过程,探讨了大型语言模型(LLMs)在这一过程中的辅助作用及局限性。
研究首先定义了可视化重定向的核心挑战,从语法(代码依赖与修改)、语义(数据映射与尺度适配)、语用(视觉传达与受众适配)三个层面进行了表征。随后,作者评估了两种LLM辅助方法的性能:
- 基线方法:直接指令LLM生成并适配代码(将代码视为文本输入);
- 程序合成管道:LLM基于示例代码和数据的属性提供结构化信息(如视觉编码),引导代码构建。
评估结果显示,两种方法在新数据未充分转换时均表现不佳,且程序合成管道因错误传播性能略逊于基线方法。最后,文章提出了未来重定向系统的设计建议,包括混合主动辅助、数据依赖可视化、整合转换支持等。
创新点
- 挑战表征:首次从语法、语义、语用三个维度系统定义了可视化重定向的挑战,