文章主要内容和创新点
主要内容
本文针对在高性能计算(HPC)集群中运行大型语言模型(LLMs)的场景,对高通Cloud AI 100 Ultra(QAic)加速器与主流高性能GPU(包括NVIDIA A100、H200,AMD MI300A)进行了基准测试与对比分析。研究以15个参数规模从1.17亿到900亿的开源LLM为测试对象,采用vLLM作为服务框架,重点评估了不同硬件在推理任务中的性能(吞吐量,即每秒生成的tokens)和能效(每瓦每秒生成的tokens)。
实验在国家研究平台(NRP)的真实HPC环境中进行,控制了资源干扰(如独占节点、固定CPU配置)以确保结果准确性。结果显示:
- 高通QAic在大多数情况下能效更优,尤其在单卡配置中,对小到中型模型(如GPT-2-117M、TinyLlama-1.1B)的能效优势显著(最高达26 tokens/(sec·watt));
- QAic的吞吐量在部分模型(如Llama3.3-90B-Vision)中超过GPU,但其优势随模型规模增大有所减弱,部分大型模型(如Granite-20B