Serving LLMs in HPC Clusters: A Comparative Study of Qualcomm Cloud AI 100 Ultra and HighPerformance

文章主要内容和创新点

主要内容

本文针对在高性能计算(HPC)集群中运行大型语言模型(LLMs)的场景,对高通Cloud AI 100 Ultra(QAic)加速器与主流高性能GPU(包括NVIDIA A100、H200,AMD MI300A)进行了基准测试与对比分析。研究以15个参数规模从1.17亿到900亿的开源LLM为测试对象,采用vLLM作为服务框架,重点评估了不同硬件在推理任务中的性能(吞吐量,即每秒生成的tokens)和能效(每瓦每秒生成的tokens)。

实验在国家研究平台(NRP)的真实HPC环境中进行,控制了资源干扰(如独占节点、固定CPU配置)以确保结果准确性。结果显示:

  • 高通QAic在大多数情况下能效更优,尤其在单卡配置中,对小到中型模型(如GPT-2-117M、TinyLlama-1.1B)的能效优势显著(最高达26 tokens/(sec·watt));
  • QAic的吞吐量在部分模型(如Llama3.3-90B-Vision)中超过GPU,但其优势随模型规模增大有所减弱,部分大型模型(如Granite-20B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值